Double perovskite (DP) oxides are promising electrode materials for symmetric solid oxide cells (SSOCs) due to their excellent electrochemical activity and stability. B-site cation doping in DP oxides affects the reversibility of phase transformation and exsolution, which plays a crucial role in the catalyst recovery. Yet, few studies have been conducted on this topic.
View Article and Find Full Text PDFSupported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications, including fuel cells, chemical conversion, and batteries. Nanocatalysts demonstrate high activity by expanding the number of active sites, but they also intensify deactivation issues, such as agglomeration and poisoning, simultaneously. Exsolution for bottom-up synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.
View Article and Find Full Text PDFIn situ exsolution for nanoscale electrode design has attracted considerable attention because of its promising activity and high stability. However, fundamental research on the mechanisms underlying particle growth remains insufficient. Herein, cation-diffusion-determined exsolution is presented using an analytical model based on classical nucleation and diffusion.
View Article and Find Full Text PDF