Publications by authors named "Bo-O Zhou"

Article Synopsis
  • The periosteum houses skeletal stem/progenitor cells (P-SSCs) crucial for bone healing, but their exact identity and specific markers are not fully understood.
  • Researchers discovered that the membrane protein Itm2a is enriched in P-SSCs, which show ability to self-renew and differentiate into various cell types necessary for bone repair.
  • Itm2a+ P-SSCs, found primarily in the outer layer of the periosteum, play a significant role in fracture healing, and the study suggests that targeting Itm2a could lead to advancements in treatments for skeletal conditions.
View Article and Find Full Text PDF

Bone is regarded as one of few tissues that heals without fibrous scar. The outer layer of the periosteum is covered with fibrous tissue, whose function in bone formation is unknown. We herein developed a system to distinguish the fate of fibrous-layer periosteal cells (FL-PCs) from the skeletal stem/progenitor cells (SSPCs) in the cambium-layer periosteum and bone marrow in mice.

View Article and Find Full Text PDF

Emerging evidence has revealed a direct differentiation route from hematopoietic stem cells to megakaryocytes (direct route), in addition to the classical differentiation route through a series of restricted hematopoietic progenitors (stepwise route). This raises the question of the importance of two alternative routes for megakaryopoiesis. Here, we developed fate-mapping systems to distinguish the two routes, comparing their quantitative and functional outputs.

View Article and Find Full Text PDF

Metabolic status is crucial for stem cell functions; however, the metabolic heterogeneity of endogenous stem cells has never been directly assessed. Here, we develop a platform for high-throughput single-cell metabolomics (hi-scMet) of hematopoietic stem cells (HSCs). By combining flow cytometric isolation and nanoparticle-enhanced laser desorption/ionization mass spectrometry, we routinely detected >100 features from single cells.

View Article and Find Full Text PDF

Somatic loss-of-function mutations of the dioxygenase Ten-eleven translocation-2 (TET2) occur frequently in individuals with clonal hematopoiesis (CH) and acute myeloid leukemia (AML). These common hematopoietic disorders can be recapitulated in mouse models. However, the underlying mechanisms by which the deficiency in TET2 promotes these disorders remain unclear.

View Article and Find Full Text PDF

Periodontium supports teeth in a mechanically stimulated tissue environment, where heterogenous stem/progenitor populations contribute to periodontal homeostasis. In this study, Leptin receptor+ (Lepr+) cells are identified as a distinct periodontal ligament stem cell (PDLSC) population by single-cell RNA sequencing and lineage tracing. These Lepr+ PDLSCs are located in the peri-vascular niche, possessing multilineage potential and contributing to tissue repair in response to injury.

View Article and Find Full Text PDF

Several cell types have been proposed to create the required microenvironment for spermatogenesis. However, expression patterns of the key growth factors produced by these somatic cells have not been systematically studied and no such factor has been conditionally deleted from its primary source(s), raising the question of which cell type(s) are the physiological sources of these growth factors. Here, using single-cell RNA sequencing and a series of fluorescent reporter mice, we found that stem cell factor (Scf), one of the essential growth factors for spermatogenesis, was broadly expressed in testicular stromal cells, including Sertoli, endothelial, Leydig, smooth muscle and Tcf21-CreER+ stromal cells.

View Article and Find Full Text PDF

Insulin-like growth factor I (IGF-1) is a key regulator of tissue growth and development in response to growth hormone stimulation. In the skeletal system, IGF-1 derived from osteoblasts and chondrocytes are essential for normal bone development; however, whether bone marrow (BM)-resident cells provide distinct sources of IGF-1 in the adult skeleton remains elusive. Here, we show that BM stromal cells (BMSCs) and megakaryocytes/platelets (MKs/PLTs) express the highest levels of IGF-1 in adult long bones.

View Article and Find Full Text PDF

During fetal development, human hematopoietic stem cells (HSCs) colonize the bone marrow (BM), where they self-renew and sustain hematopoiesis throughout life; however, the precise timepoint at which HSCs seed the BM is unclear. We used single-cell RNA-sequencing to map the transcriptomic landscape of human fetal BM and spleen hematopoietic stem/progenitor cells (HSPCs) and their microenvironment from 10 to 14 post-conception weeks (PCWs). We further demonstrated that functional HSCs capable of reconstituting long-term multi-lineage hematopoiesis in adult NOG mice do not emerge in the BM until 12 PCWs.

View Article and Find Full Text PDF

Multiple distinct types of skeletal progenitors have been shown to contribute to endochondral bone development and maintenance. However, the division of labor and hierarchical relationship between different progenitor populations remain undetermined. Here we developed dual-recombinase fate-mapping systems to capture the skeletal progenitor transition during postnatal bone formation.

View Article and Find Full Text PDF
Article Synopsis
  • This study looked at how helpful bacteria in our gut that make a substance called lactate affect blood cell production from special cells called hematopoietic stem cells (HSCs).
  • Scientists found that when mice were missing a receptor for lactate (called Gpr81), they had fewer HSCs in their bone marrow compared to normal mice.
  • Giving the mice bacteria that produce lactate helped boost blood cell production and the ability of HSCs to renew themselves, showing that lactate from gut bacteria helps keep our blood system healthy.
View Article and Find Full Text PDF

Background And Aims: Studies of the identity and pathophysiology of fibrogenic HSCs have been hampered by a lack of genetic tools that permit specific and inducible fate-mapping of these cells in vivo. Here, by single-cell RNA sequencing of nonparenchymal cells from mouse liver, we identified transcription factor 21 (Tcf21) as a unique marker that restricted its expression to quiescent HSCs.

Approach And Results: Tracing Tcf21 cells by Tcf21-CreER (Cre-Estrogen Receptor fusion protein under the control of Tcf21 gene promoter) targeted ~10% of all HSCs, most of which were located at periportal and pericentral zones.

View Article and Find Full Text PDF

Telomeres at the ends of eukaryotic chromosomes are essential for genome integrality and stability. In order to identify genes that sustain telomere maintenance independently of telomerase recruitment, we have exploited the phenotype of over-long telomeres in the cells that express Cdc13-Est2 fusion protein, and examined 195 strains, in which individual non-essential gene deletion causes telomere shortening. We have identified 24 genes whose deletion results in dramatic failure of Cdc13-Est2 function, including those encoding components of telomerase, Yku, KEOPS and NMD complexes, as well as quite a few whose functions are not obvious in telomerase activity regulation.

View Article and Find Full Text PDF

Small extracellular vesicles (SEVs) are functional messengers of certain cellular niches that permit noncontact cell communications. Whether niche-specific SEVs fulfill this role in cancer is unclear. Here, we used 7 cell type-specific mouse Cre lines to conditionally knock out Vps33b in Cdh5+ or Tie2+ endothelial cells (ECs), Lepr+ BM perivascular cells, Osx+ osteoprogenitor cells, Pf4+ megakaryocytes, and Tcf21+ spleen stromal cells.

View Article and Find Full Text PDF

Programmed DNA recombination in mammalian cells occurs predominantly in a directional manner. While random DNA breaks are typically repaired both by deletion and by inversion at approximately equal proportions, V(D)J and class switch recombination (CSR) of immunoglobulin heavy chain gene overwhelmingly delete intervening sequences to yield productive rearrangement. What factors channel chromatin breaks to deletional CSR in lymphocytes is unknown.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) and skeletal stem cells (SSCs) cohabit in the bone marrow. KITL (C-KIT ligand) from LEPR adult bone marrow stromal cells is pivotal for HSC maintenance. In contrast, it remains unclear whether KITL/C-KIT signaling also regulates SSCs.

View Article and Find Full Text PDF

Background/objective: Intervertebral disc degeneration (IDD) remains to be an intractable clinical challenge. Although IDD is characterised by loss of notochordal cells (NCs) and dysfunction of nucleus pulposus (NP) cells, little is known about the origin, heterogeneity, fate and maintenance of NCs and NP cells, which further stunts the therapeutic development. Thus, effective tools to spatially and temporally trace specific cell lineage and clarify cell functions in intervertebral disc (IVD) development and homoeostasis are urgently required.

View Article and Find Full Text PDF

In the initial published version of this article, there was an error in the "MATERIALS AND METHODS" section. The catalog number of PEGMMA500 for preparing tB-PEG dehydration solution and BB-PEG clearing medium was listed as Sigma-Aldrich 409529. The correct catalog number should be Sigma-Aldrich 447943.

View Article and Find Full Text PDF

The metabolic properties of leukemia-initiating cells (LICs) in distinct bone marrow niches and their relationships to cell-fate determinations remain largely unknown. Using a metabolic imaging system with a highly responsive genetically encoded metabolic sensor, SoNar, we reveal that SoNar-high cells are more glycolytic, enriched for higher LIC frequency, and develop leukemia much faster than SoNar-low counterparts in an MLL-AF9-induced murine acute myeloid leukemia model. SoNar-high cells mainly home to and locate in the hypoxic endosteal niche and maintain their activities through efficient symmetric division.

View Article and Find Full Text PDF

Haematopoietic stem and progenitor cells (HSPCs) give rise to all blood lineages that support the entire lifespan of vertebrates. After HSPCs emerge from endothelial cells within the developing dorsal aorta, homing allows the nascent cells to anchor in their niches for further expansion and differentiation. Unique niche microenvironments, composed of various blood vessels as units of microcirculation and other niche components such as stromal cells, regulate this process.

View Article and Find Full Text PDF

The number and self-renewal capacity of hematopoietic stem cells (HSCs) are tightly regulated at different developmental stages. Many pathways have been implicated in regulating HSC development in cell autonomous manners; however, it remains unclear how HSCs sense and integrate developmental cues. In this study, we identified an extrinsic mechanism by which HSC number and functions are regulated during mouse puberty.

View Article and Find Full Text PDF

Tissue clearing technique enables visualization of opaque organs and tissues in 3-dimensions (3-D) by turning tissue transparent. Current tissue clearing methods are restricted by limited types of tissues that can be cleared with each individual protocol, which inevitably led to the presence of blind-spots within whole body or body parts imaging. Hard tissues including bones and teeth are still the most difficult organs to be cleared.

View Article and Find Full Text PDF

Endothelial cells and leptin receptor (LepR) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including stem cell factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF.

View Article and Find Full Text PDF

In the budding yeast Saccharomyces cerevisiae, heterochromatin structure is found at three chromosome regions, which are homothallic mating-type loci, rDNA regions and telomeres. To address how telomere heterochromatin is assembled under physiological conditions, we employed a de novo telomere addition system, and analyzed the dynamic chromatin changes of the TRP1 reporter gene during telomere elongation. We found that integrating a 255-bp, but not an 81-bp telomeric sequence near the TRP1 promoter could trigger Sir2 recruitment, active chromatin mark(s)' removal, chromatin compaction and TRP1 gene silencing, indicating that the length of the telomeric sequence inserted in the internal region of a chromosome is critical for determining the chromatin state at the proximal region.

View Article and Find Full Text PDF