Duchenne muscular dystrophy, the most common form of childhood muscular dystrophy, is caused by X-linked inherited mutations in the dystrophin gene. Dystrophin deficiencies result in the loss of the dystrophin-glycoprotein complex at the plasma membrane, which leads to structural instability and muscle degeneration. Previously, we induced muscle-specific overexpression of Akt, a regulator of cellular metabolism and survival, in mdx mice at pre-necrotic (<3.
View Article and Find Full Text PDFThe amplitude histogram of spontaneously occurring miniature synaptic currents (mSCs) is skewed positively at developing Xenopus neuromuscular synapses formed in culture. To test whether the quantal size of nerve-evoked quanta (eSCs) distributes similarly, we compared the amplitude histogram of single quantum eSCs in low external Ca(2+) with that of mSCs and found that nerve stimulation preferentially released large quanta. Depolarization of presynaptic terminals by elevating [K(+)] in the external solution or by direct injection of current through a patch pipette increased the mSC frequency and preferentially, but not exclusively, evoked the release of large quanta, resulting in a second broad peak in the amplitude histogram.
View Article and Find Full Text PDFIntegrins are found at most or all synapses and play a variety of roles. At frog neuromuscular junctions, mechanical tension on integrins due to muscle stretch or hypertonicity causes a powerful modulation of release efficacy. Understanding the mechanism(s) of integrin-mediated modulation will likely further our understanding of mechanisms of neurotransmitter release.
View Article and Find Full Text PDF