Publications by authors named "Bo Yi Chen"

Light elements or compounds with an average atomic number () of less than 10 are difficult to detect due to their weak interactions with electrons and photons. Here, we introduce a direct thermal absorbance measurement platform for scanning electron microscopy. The technique, named ZEM, is particularly sensitive to low materials, including hydrogen ( = 1) and vacancy ( = 0).

View Article and Find Full Text PDF

The traditional sulfur selenization process in CuZnSn(S,Se) (CZTSSe) solar cell fabrication often results in the creation of localized anion vacancies ( and ). These vacancies are considered harmful defects as they can trap carriers generated by light, leading to reduced solar cell efficiency. Moreover, concrete evidence has been lacking on the extent of the impact caused by these anion vacancies.

View Article and Find Full Text PDF

Backscattered electron (BSE) imaging based on scanning electron microscopy (SEM) has been widely used in scientific and industrial disciplines. However, achieving consistent standards and precise quantification in BSE images has proven to be a long-standing challenge. Previous methods incorporating dedicated calibration processes and Monte Carlo simulations have still posed practical limitations for widespread adoption.

View Article and Find Full Text PDF

In this study, a combination of X-ray excited optical luminescence (XEOL), time-resolved XEOL (TR-XEOL) and the Hanbury-Brown and Twiss (HB-T) interferometer at the Taiwan Photon Source (TPS) 23A X-ray nanoprobe beamline for exploring quantum materials is demonstrated. On the basis of the excellent spatial resolution rendered using a nano-focused beam, emission distributions of artificial micro-diamonds can be obtained by XEOL maps, and featured emission peaks of a selected local area can be obtained by XEOL spectra. The hybrid bunch mode of the TPS not only provides a sufficiently high peak power density for experiments at each beamline but also permits high-quality temporal domain (∼200 ns) measurements for investigating luminescence dynamics.

View Article and Find Full Text PDF

Purple sweet potato (PSP) powder with anthocyanins possesses the ability to reduce oxidative stress and inflammation. Studies have presumed a positive correlation between body fat and dry eye disease (DED) in adults. The regulation of oxidative stress and inflammation has been proposed as the mechanism underlying DED.

View Article and Find Full Text PDF

An attenuator is generally used to decrease the power of an X-ray beam and prevent damage to detector sensors and other optical components. Therefore, attenuators are designed using foil or gas to absorb light source power. In this project, a large aperture and a water-cooling attenuator system are construed for the TPS 31A Projection X-ray Microscope and Transmission X-ray Microscope beamline.

View Article and Find Full Text PDF

Recent developments in nanoscale thermal metrology using electron microscopy have made impressive advancements in measuring either phononic or thermal transport properties of nanoscale samples. However, its potential in material analysis has never been considered. Here we introduce a direct thermal absorbance measurement platform in scanning electron microscope (SEM) and demonstrate that its signal can be utilized for atomic number () analysis at nanoscales.

View Article and Find Full Text PDF

This study develops and successfully demonstrates visualization methods for the characterization of europium (Eu)-doped BaAlO phosphors using X-ray nanoprobe techniques. X-ray fluorescence (XRF) mapping not only gives information on the elemental distributions but also clearly reveals the valence state distributions of the Eu and Eu ions. The accuracy of the estimated valence state distributions was examined by performing X-ray absorption spectroscopy (XAS) across the Eu L-edge (6.

View Article and Find Full Text PDF

Heterogeneous catalysis based on air-stable lanthanide complexes is relatively rare, especially for electrochemical water oxidation and reduction. Therefore, it is highly desired to investigate the synergy caused by cocatalysts on the lanthanide complex family for heterogeneous catalysis because of their structural diversity, air/moisture insensitivity, and easy preparation under an air atmosphere. Two mononuclear and three dinuclear dysprosium complexes containing a series of Schiff-base ligands have been demonstrated as robust electrocatalysts for triggering heterogeneous water oxidation in alkaline solution, in which the complex [Dy(hmb)(OAc)]·MeCN() was revealed to have the best activity toward heterogeneous water oxidation among all five complexes in the present study.

View Article and Find Full Text PDF

Time-resolved X-ray excited optical luminescence (TR-XEOL) was developed successfully for the 23A X-ray nanoprobe beamline located at the Taiwan Photon Source (TPS). The advantages of the TR-XEOL facility include (i) a nano-focused X-ray beam (<60 nm) with excellent spatial resolution and (ii) a streak camera that can simultaneously record the XEOL spectrum and decay time. Three time spans, including normal (30 ps to 2 ns), hybrid (30 ps to 310 ns) and single (30 ps to 1.

View Article and Find Full Text PDF

The multifunctional hard X-ray nanoprobe at Taiwan Photon Source (TPS) exhibits the excellent ability to simultaneously characterize the X-ray absorption, X-ray excited optical luminescence (XEOL) as well as the dynamics of XEOL of materials. Combining the scanning electron microscope (SEM) into the TPS 23A end-station, we can easily and quickly measure the optical properties to map out the morphology of a ZnO microrod. A special phenomenon has been observed that the oscillations in the XEOL associated with the confinement of the optical photons in the single ZnO microrod shows dramatical increase while the X-ray excitation energy is set across the Zn K-edge.

View Article and Find Full Text PDF

Polarization-dependent hard X-ray excited optical luminescence (XEOL) was used to study not only the optical properties but also the crystallographic orientations of a non-polar a-plane ZnO wafer. In addition to a positive-edge jump and extra oscillations in the near-band-edge (NBE) XEOL yield, we observed a blue shift of the NBE emission peak that follows the polarization-dependent X-ray absorption near-edge structure (XANES) as the X-ray energy is tuned across the Zn K-edge. This NBE blue shift is caused by the larger X-ray absorption, generating higher free carriers to reduce the exciton-LO phonon coupling, which causes a decrease in the exciton activation energy.

View Article and Find Full Text PDF

The formation of haloacetamides (HAcAms) and haloacetonitriles (HANs) from a solution containing natural organic matter and a secondary effluent sample was evaluated for disinfection by chlorination, chloramination, and chlorination followed by chloramination (ClNHCl process). The use of preformed monochloramine (NHCl) produced higher concentrations of HAcAms and lower concentrations of HANs than chlorination, while the ClNHCl process produced the highest concentrations of HAcAms and HANs. These results indicate that the ClNHCl process, which inhibited the formation of regulated trihalomethanes compared with chlorination, enhanced the formation of HAcAms and HANs.

View Article and Find Full Text PDF

Atomic force microscope (AFM) is a powerful tool for force measurement in nanoscale. Many methods have been developed to obtain the precise cantilever's spring constant for improving the accuracy of force measurement. AFM cantilevers are usually made by single crystal silicon of which the anisotropic material property seriously affects the spring constant of cantilevers and has not considered before.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) can be used to measure the surface morphologies and the mechanical properties of nanostructures. The force acting on the AFM cantilever can be obtained by multiplying the spring constant of AFM cantilever and the corresponding deformation. To improve the accuracy of force experiments, the spring constant of AFM cantilever must be calibrated carefully.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) probe with different functions can be used to measure the bonding force between atoms or molecules. In order to have accurate results, AFM cantilevers must be calibrated precisely before use. The AFM cantilever's spring constant is usually provided by the manufacturer, and it is calculated from simple equations or some other calibration methods.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnm6habspsb3uooucpjftceh7mkbgmc07): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once