Publications by authors named "Bo Thiesson"

Background: Current guidelines regarding oxytocin stimulation are not tailored to individuals as they are based on randomised controlled trials. The objective of the study was to develop an artificial intelligence (AI) model for individual prediction of the risk of caesarean delivery (CD) in women with a cervical dilatation of 6 cm after oxytocin stimulation for induced labour. The model included not only variables known when labour induction was initiated but also variables describing the course of the labour induction.

View Article and Find Full Text PDF

Background: The increasing aging population and limited health care resources have placed new demands on the healthcare sector. Reducing the number of hospitalizations has become a political priority in many countries, and special focus has been directed at potentially preventable hospitalizations.

Objectives: We aimed to develop an artificial intelligence (AI) prediction model for potentially preventable hospitalizations in the coming year, and to apply explainable AI to identify predictors of hospitalization and their interaction.

View Article and Find Full Text PDF

Purpose: In this study, we investigate the potential of a novel artificial intelligence-based system for autonomous follow-up of patients treated for neovascular age-related macular degeneration (AMD).

Methods: A temporal deep learning model was trained on a data set of 84 489 optical coherence tomography scans from AMD patients to recognize disease activity, and its performance was compared with a published non-temporal model trained on the same data (Acta Ophthalmol, 2021). An autonomous follow-up system was created by augmenting the AI model with deterministic logic to suggest treatment according to the observe-and-plan regimen.

View Article and Find Full Text PDF

Problem framing is critical to developing risk prediction models because all subsequent development work and evaluation takes place within the context of how a problem has been framed and explicit documentation of framing choices makes it easier to compare evaluation metrics between published studies. In this work, we introduce the basic concepts of framing, including prediction windows, observation windows, window shifts and event-triggers for a prediction that strongly affects the risk of clinician fatigue caused by false positives. Building on this, we apply four different framing structures to the same generic dataset, using a sepsis risk prediction model as an example, and evaluate how framing affects model performance and learning.

View Article and Find Full Text PDF

Purpose: To meet the demands imposed by the continuing growth of the Age-related macular degeneration (AMD) patient population, automation of follow-ups by detecting retinal oedema using deep learning might be a viable approach. However, preparing and labelling data for training is time consuming. In this study, we investigate the feasibility of training a convolutional neural network (CNN) to accurately detect retinal oedema on optical coherence tomography (OCT) images of AMD patients with labels derived directly from clinical treatment decisions, without extensive preprocessing or relabelling.

View Article and Find Full Text PDF

Background: The timeliness of detection of a sepsis incidence in progress is a crucial factor in the outcome for the patient. Machine learning models built from data in electronic health records can be used as an effective tool for improving this timeliness, but so far, the potential for clinical implementations has been largely limited to studies in intensive care units. This study will employ a richer data set that will expand the applicability of these models beyond intensive care units.

View Article and Find Full Text PDF