Publications by authors named "Bo Min Kang"

SARS-CoV-2 mutations have resulted in the emergence of multiple concerning variants, with Omicron being the dominant strain presently. Therefore, we developed a monoclonal antibody (mAb) against the spike (S) protein of SARS-CoV-2 Omicron for therapeutic applications. We established the 1E3H12 mAb, recognizing the receptor binding domain (RBD) of the Omicron S protein, and found that the 1E3H12 mAb can efficiently recognize the Omicron S protein with weak affinity to the Alpha, Beta, and Mu variants, but not to the parental strain and Delta variant.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how SARS-CoV-2 evolves, particularly through coinfection with different strains, focusing on the impact of the Delta variant.
  • Researchers found that fewer mutations occurred in Calu-3 cells compared to other cells after passaging, indicating a different mutation rate.
  • Analysis of tumors from a mouse model revealed more diverse viral mutations with less lethal outcomes, suggesting parental SARS-CoV-2 is more dominant during coinfection, but Delta may still influence its evolution towards improved host adaptation.
View Article and Find Full Text PDF

Paxlovid is the first approved oral treatment for coronavirus disease 2019 and includes nirmatrelvir, a protease inhibitor targeting the main protease (M) of SARS-CoV-2, as one of the key components. While some specific mutations emerged in M were revealed to significantly reduce viral susceptibility to nirmatrelvir , there is no report regarding resistance to nirmatrelvir in patients and animal models for SARS-CoV-2 infection yet. We recently developed xenograft tumors derived from Calu-3 cells in immunodeficient mice and demonstrated extended replication of SARS-CoV-2 in the tumors.

View Article and Find Full Text PDF

SARS-CoV-2 Omicron has the largest number of mutations among all the known SARS-CoV-2 variants. The presence of these mutations might explain why Omicron is more infectious and vaccines have lower efficacy to Omicron than other variants, despite lower virulence of Omicron. We recently established a long-term in vivo replication model by infecting Calu-3 xenograft tumors in immunodeficient mice with parental SARS-CoV-2 and found that various mutations occurred majorly in the spike protein during extended replication.

View Article and Find Full Text PDF

We recently established a long-term SARS-CoV-2 infection model using lung-cancer xenograft mice and identified mutations that arose in the SARS-CoV-2 genome during long-term propagation. Here, we applied our model to the SARS-CoV-2 Delta variant, which has increased transmissibility and immune escape compared with ancestral SARS-CoV-2. We observed limited mutations in SARS-CoV-2 Delta during long-term propagation, including two predominant mutations: R682W in the spike protein and L330W in the nucleocapsid protein.

View Article and Find Full Text PDF

Introduction: The spectrum of SARS-CoV-2 mutations have increased over time, resulting in the emergence of several variants of concern. Persistent infection is assumed to be involved in the evolution of the variants. Calu-3 human lung cancer cells persistently grow without apoptosis and release low virus titers after infection.

View Article and Find Full Text PDF

Peptides are promising therapeutic agents for COVID-19 because of their specificity, easy synthesis, and ability to be fine-tuned. We previously demonstrated that a cell-permeable peptide corresponding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike C-terminal domain (CD) inhibits the interaction between viral spike and nucleocapsid proteins that results in SARS-CoV-2 replication in vitro. Here, we used docking studies to design R-t-Spike CD(D), a more potent short cell-penetrating peptide composed of all D-form amino acids and evaluated its inhibitory effect against the replication of SARS-CoV-2 S clade and other variants.

View Article and Find Full Text PDF

The coronavirus disease 2019 pandemic, elicited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is ongoing. Currently accessible antigen-detecting rapid diagnostic tests are limited by their low sensitivity and detection efficacy due to evolution of SARS-CoV-2 variants. Here, we produced and characterized an anti-SARS-CoV-2 nucleocapsid (N) protein-specific monoclonal antibody (mAb), 2A7H9.

View Article and Find Full Text PDF