J Phys Condens Matter
February 2025
Recently, layered transition metal thiophosphateP(= transition metals,= S or Se) have gained significant attention because of their rich magnetic, optical, and electronic properties. Specifically, the diverse magnetic structures and the robustness of magnetism in the two-dimensional (2D) limit have made them prominent candidates to study 2D magnetism. Numerous efforts such as substitutions and interlayer intercalations have been adopted to tune the magnetic properties of these materials, which has greatly deepened the understanding of the underlying mechanisms that govern the properties.
View Article and Find Full Text PDFMagnetotransport, the response of electrical conduction to external magnetic field, acts as an important tool to reveal fundamental concepts behind exotic phenomena and plays a key role in enabling spintronic applications. Magnetotransport is generally sensitive to magnetic field orientations. In contrast, efficient and isotropic modulation of electronic transport, which is useful in technology applications such as omnidirectional sensing, is rarely seen, especially for pristine crystals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
The response of cells to environmental stimuli, under either physiological or pathological conditions, plays a key role in determining cell fate toward either adaptive survival or controlled death. The efficiency of such a feedback mechanism is closely related to the most challenging human diseases, including cancer. Since cellular responses are implemented through physical forces exerted on intracellular components, more detailed knowledge of force distribution through modern imaging techniques is needed to ensure a mechanistic understanding of these forces.
View Article and Find Full Text PDFNarrow bandgap inorganic compounds are extremely important in many areas of physics. However, their basic parameter database for surface analysis is incomplete. Electron inelastic mean free paths (IMFPs) are important parameters in surface analysis methods, such as electron spectroscopy and electron microscopy.
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2023
Knowledge of absolute secondary electron yield () is important for various applications of electron emission materials. Besides, it is also crucial to know the dependence of on primary electron energy and material properties like atomic number Z. The available experimental database of reveals a large discrepancy among the measurement data, while the oversimplified semi-empirical theories of secondary electron emission can only present the general shape of the yield curve but not the absolute yield value.
View Article and Find Full Text PDFTransmission electron microscopy (TEM) image drift correction has been effectively addressed using diverse approaches, including the cross correlation algorithm (CC) and other strategies. However, most of the strategies fall short of achieving sufficient accuracy or cannot strike a balance between time consumption and accuracy. The present study proposes a TEM image drift correction strategy that enhances accuracy without any additional time consumption.
View Article and Find Full Text PDFIn this article, we developed a new method to analyze the complex chemical reactions induced by electron beam radiolysis based on big data analysis. At first, we built an element transport network to show the chemical reactions. Furthermore, the linearity between the species was quantified by Pearson correlation coefficient analysis.
View Article and Find Full Text PDFMaterials (Basel)
November 2021
In order to solve the problem of lack of natural river sand, crushed waste oyster shells (WOS) were used to replace river sand. By replacing 20% river sand, WOS mortar with different particle sizes of WOS were made for the experiment. Through experimental observation, the initial slump and slump flow loss rate were studied.
View Article and Find Full Text PDFCharging effect frequently occurs when characterizing nonconductive materials using electrons as probes and/or signals and can impede the acquisition of useful information about the material under investigation. It is not adequate to investigate it merely by experiments, but theoretical investigations, for which the Monte Carlo method is a suitable tool, are also necessary. In this paper we review Monte Carlo simulations and selected experiments, intending to provide general insight into the charging effects induced by electron beam irradiation.
View Article and Find Full Text PDFWe present the first theoretical recipe for the clear and individual separation of surface, bulk and Begrenzungs effect components in surface electron energy spectra. The procedure ends up with the spectral contributions originated from surface and bulk-Begrenzungs excitations by using a simple method for dealing with the mixed scatterings. As an example, the model is applied to the reflection electron energy loss spectroscopy spectrum of Si.
View Article and Find Full Text PDFCellular mechanical properties are potential cancer biomarkers used for objective cytology to replace the current subjective method relying on cytomorphology. However, heterogeneity among intra/intercellular mechanics and the interplay between cytoskeletal prestress and elastic modulus obscured the difference detectable between malignant and benign cells. In this work, we collected high density nanoscale prestress and elastic modulus data from a single cell by AFM indentation to generate a cellular mechanome.
View Article and Find Full Text PDFThe TPP-2M formula is the most popular empirical formula for the estimation of the electron inelastic mean free paths (IMFPs) in solids from several simple material parameters. The TPP-2M formula, however, poorly describes several materials because it relies heavily on the traditional least-squares analysis. Herein, we propose a new framework based on machine learning to overcome the weakness.
View Article and Find Full Text PDF2D transition metal dichalcogenides (TMDs) have received widespread interest by virtue of their excellent electrical, optical, and electrochemical characteristics. Recent studies on TMDs have revealed their versatile utilization as electrocatalysts, supercapacitors, battery materials, and sensors, etc. In this study, MoS nanosheets are successfully assembled on the porous VS (P-VS ) scaffold to form a MoS /VS heterostructure.
View Article and Find Full Text PDFPlasmon gain by core-level electrons or elastic electrons observed in past studies seems to be of no practical value in material characterization, mainly because of their ultralow signal intensities. Nevertheless, in the emission spectra of Au samples, we have observed plasmon gain in secondary electrons. The electrons gain energy from surface plasmons after escaping from the surface and thereby only carry surface-plasmon information in the vacuum above the surface.
View Article and Find Full Text PDFBlack phosphorus nanobelts are fabricated with a one-step solid-liquid-solid reaction method under ambient pressure, where red phosphorus is used as the precursor instead of white phosphorus. The thickness of the as-fabricated nanobelts ranges from micrometers to tens of nanometers as studied by scanning electron microscopy. Energy dispersive X-ray spectroscopy and X-ray diffraction indicate that the nanobelts have the composition and the structure of black phosphorus, transmission electron microscopy reveals a typical layered structure stacked along the b-axis, and scanning transmission electron microscopy with energy dispersive X-ray spectroscopy analysis demonstrates the doping of bismuth into the black phosphorus structure.
View Article and Find Full Text PDFCharacterization techniques available for bulk or thin-film solid-state materials have been extended to substrate-supported nanomaterials, but generally non-quantitatively. This is because the nanomaterial signals are inevitably buried in the signals from the underlying substrate in common reflection-configuration techniques. Here, we propose a virtual substrate method, inspired by the four-point probe technique for resistance measurement as well as the chop-nod method in infrared astronomy, to characterize nanomaterials without the influence of underlying substrate signals from four interrelated measurements.
View Article and Find Full Text PDFIn this work, medical waste (MW) incinerator fly ashes from different types of incinerators were subjected to supercritical water (SCW) and SCW+H(2)O(2) (SCWH) treatments. Sequential extraction experiments showed that, after SCW treatment, heavy metals in exchangeable and carbonate forms in the ashes could be transferred into other relatively stable forms, e.g.
View Article and Find Full Text PDF