Cellulose acetate butyrate (CAB) is a possible candidate, being a raw material derived from renewable resources, to replace fossil-based materials. This is due to its thermoplastic properties and the relative ease with which it could be implemented within the existing industry. With a significant amount of variation in CAB on the market today, a knowledge gap has been identified regarding the understanding of the polymer structural arrangement in films.
View Article and Find Full Text PDFIn this study, the effect of different alcohols and esters as a coagulation medium in the regeneration of cellulose dissolved in an aqueous LiOH-urea-based solvent was thoroughly investigated using various methods such as solid state NMR, X-ray diffraction, water contact angle, oxygen gas permeability, mechanical testing, and scanning electron microscopy. It was observed that several material properties of the regenerated cellulose films follow trends that correlate to the degree of cellulose II crystallinity, which is determined to be set by the miscibility of the coagulant medium (nonsolvent) and the aqueous alkali cellulose solvent rather than the nonsolvents' polarity. This article provides an insight, thus creating a possibility to carefully tune and control the cellulose material properties when tailor-made for different applications.
View Article and Find Full Text PDF