Publications by authors named "Blythe Holmes"

Rabbit 15-lipoxygenase-1 (15-LO-1) oxygenates arachidonic acid (AA) into 15-hydroperoxyeicosatetraenoic acid, which is then converted to the vasodilatory 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) and 11,12,15-trihydroxyeicosatrienoic acid (THETA). We studied the age-dependent expression of the 15-LO-1 in rabbit aorta and its effects on the synthesis of THETA, HEETA, and vasoactivity. Aortas of 1-wk-old rabbits express greater amounts of 15-LO-1 mRNA and protein compared with aortas of 4-, 8-, or 16-wk-old rabbits.

View Article and Find Full Text PDF

Epoxyeicosatrienoic acids (EETs) are cytochrome P450 epoxygenase metabolites of arachidonic acid. EETs mediate numerous biological functions. In coronary arteries, they regulate vascular tone by the activation of smooth muscle large-conductance, calcium-activated potassium (BK(Ca)) channels to cause hyperpolarization and relaxation.

View Article and Find Full Text PDF

Endothelium-derived steroidogenic factor (EDSF) is an endothelial peptide that stimulates aldosterone release from bovine adrenal zona glomerulosa (ZG) cells. The regulation of aldosterone release by combinations of EDSF and angiotensin II (AII) or EDSF and ACTH was investigated. Endothelial cells (ECs) and EC-conditioned media (ECCM) increased aldosterone release from ZG cells, an activity attributed to EDSF.

View Article and Find Full Text PDF

Endothelium-dependent vasorelaxation of the rabbit aorta is mediated by either nitric oxide (NO) or arachidonic acid (AA) metabolites from cyclooxygenase (COX) and 15-lipoxygenase (15-LO) pathways. 15-LO-1 metabolites of AA, 11,12,15-trihydroxyeicosatrienoic acid (THETA), and 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) cause concentration-dependent relaxation. We tested the hypothesis that in the 15-LO pathway of AA metabolism, 15-LO-1 is sufficient and is the rate-limiting step in inducing relaxations in rabbit aorta.

View Article and Find Full Text PDF

Objective: Aortic 15-lipoxygenase (15-LO) metabolizes arachidonic acid (AA) to 15-hydroperoxyeicosatetraenoic acid, which is then converted to the vasodilators 15-hydroxy-11,12-epoxyeicosatrienoic acid and 11,12,15-trihydroxyeicosatrienoic acid. These metabolites contribute to endothelium-dependent relaxations of rabbit aorta to AA and acetylcholine. We investigated the identity of rabbit aortic 15-LO and studied its importance in the regulation of vascular tone.

View Article and Find Full Text PDF

Epoxyeicosatrienoic acids (EETs) are endothelium-derived cytochrome P-450 (CYP) metabolites of arachidonic acid that relax vascular smooth muscle by large-conductance calcium-activated potassium (BK(Ca)) channel activation and membrane hyperpolarization. We hypothesized that if smooth muscle cells (SMCs) had the capacity to synthesize EETs, endogenous EET production would increase BK(Ca) channel activity. Bovine coronary SMCs were transduced with adenovirus coding the CYP Bacillus megaterium -3 (F87V) (CYP BM-3) epoxygenase that metabolizes arachidonic acid exclusively to 14(S),15(R)-EET.

View Article and Find Full Text PDF

ACh stimulates arachidonic acid (AA) release from membrane phospholipids of vascular endothelial cells (ECs). In rabbit aorta, AA is metabolized through the 15-lipoxygenase pathway to form vasodilatory eicosanoids 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) and 11,12,15-trihydroxyeicosatrienoic acid (THETA). AA is released from phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by phospholipase A2 (PLA2), or from phosphatidylinositol (PI) by phospholipase C (PLC) pathway.

View Article and Find Full Text PDF

Adrenal steroidogenesis is modulated by humoral and neuronal factors and blood flow. Angiotensin II (AII) stimulates adrenal cortical aldosterone and cortisol production and medullary catecholamine release. However, AII regulation of adrenal vascular tone has not been characterized.

View Article and Find Full Text PDF

A liquid chromatography-electrospray ionization-mass spectrometry method was developed to simultaneously determine the concentrations of aldosterone, corticosterone, cortisol, deoxycorticosterone, pregnenolone, and progesterone in bovine adrenal zona glomerulosa (ZG) cells. Steroids were extracted by liquid-liquid extraction, separated on a reverse-phase C18 column, ionized by electrospray, and detected by single-quadrupole mass spectrometry in a positive ion mode. All steroids formed sodium adducts at high abundance.

View Article and Find Full Text PDF

We recently reported that the lipoxygenase product 11,12,15-trihydroxyeicosatrienoic acid (THETA) mediates arachidonic acid (AA)-induced relaxation in the rabbit aorta. This study was designed to determine whether this lipoxygenase metabolite is involved in relaxation responses to AA in rabbit small mesenteric arteries. AA (10(-9)-10(-4) M) produced potent relaxations in isolated phenylephrine-preconstricted arteries, with a maximal relaxation of 99 +/- 0.

View Article and Find Full Text PDF

Acute nitric oxide (NO) inhibits angiotensin II (ANG II)-stimulated aldosterone synthesis in zona glomerulosa (ZG) cells. In this study, we investigated the effects of chronic administration of NO on the ANG II receptor type 1 (AT1) expression and aldosterone synthesis. ZG cells were treated daily with DETA NONOate (10(-4) M), an NO donor, for 0, 12, 24, 48, 72, and 96 h.

View Article and Find Full Text PDF