Melatonin is considered a multifunctional stress metabolite and a novel plant hormone affecting seed germination, root architecture, circadian rhythms, leaf senescence, and fruit ripening. Melatonin functions related to plant adaptation to stress stimuli of various natures are considered especially important. One of the key components of melatonin's stress-protective action is its ability to neutralise reactive oxygen species (ROS) and reactive nitrogen species directly.
View Article and Find Full Text PDFBackground: False flax, or gold-of-pleasure (Camelina sativa) is an oilseed that has received renewed research interest as a promising vegetable oil feedstock for liquid biofuel production and other non-food uses. This species has also emerged as a model for oilseed biotechnology research that aims to enhance seed oil content and fatty acid quality. To date, a number of genetic engineering and gene editing studies on C.
View Article and Find Full Text PDFBiomass crops engineered to accumulate energy-dense triacylglycerols (TAG or 'vegetable oils') in their vegetative tissues have emerged as potential feedstocks to meet the growing demand for renewable diesel and sustainable aviation fuel (SAF). Unlike oil palm and oilseed crops, the current commercial sources of TAG, vegetative tissues, such as leaves and stems, only transiently accumulate TAG. In this report, we used grain (Texas430 or TX430) and sugar-accumulating 'sweet' (Ramada) genotypes of sorghum, a high-yielding, environmentally resilient biomass crop, to accumulate TAG in leaves and stems.
View Article and Find Full Text PDFBackground: Fomitopsis pinicola is one of the most common fungi found in temperate zone of Europe, widely distributed spread in Asia and North America. Fungus has a wide range of therapeutic activity: antitumor, antimicrobial, anti-inflammatory, antidiabetic, antifungal, hepatoprotective, hemostatic action. A number of studies have confirmed the significant antioxidant activity of F.
View Article and Find Full Text PDFBackground: Tubulins play crucial roles in numerous fundamental processes of plant development. In flowering plants, tubulins are grouped into α-, β- and γ-subfamilies, while α- and β-tubulins possess a large isotype diversity and gene number variations among different species. This circumstance leads to insufficient recognition of orthologous isotypes and significantly complicates extrapolation of obtained experimental results, and brings difficulties for the identification of particular tubulin isotype function.
View Article and Find Full Text PDFThe stress-protective effect of melatonin (N-acetyl-5-methoxytryptamine) on plant cells is mediated by key signaling mediators, in particular calcium ions and reactive oxygen species (ROS). However, the links between changes in calcium and redox homeostasis and the formation of adaptive responses of cultivated cereals (including wheat) to the action of high temperatures have not yet been studied. In the present study, we investigated the possible involvement of ROS and calcium ions as signaling mediators in developing heat resistance in wheat (Triticum aestivum L.
View Article and Find Full Text PDFAutophagy plays an important role in plant growth and development, pathogen invasion and modulates plant response and adaptation to various abiotic stress stimuli. The biogenesis and trafficking of autophagosomes involve microtubules (MTs) as important actors in the autophagic process. However, initiation of autophagy in plants under microgravity has not been previously studied.
View Article and Find Full Text PDFThe leading pathological mechanisms of Alzheimer's disease are amyloidosis and inflammation. The presented work was aimed to study the effect of human peripheral blood mononuclear cells (hPBMcs) cells-matrix adhesion on their pro-inflammatory state . Although direct interaction of Аβ42 to PBMC is not a cellular model of Alzheimer's disease, PBMCs may serve as test cells to detect Аβ42-dependent molecular effects in monitoring disease progression.
View Article and Find Full Text PDFBackground: The production of Pleurotus ostreatus mycelium as a promising object for use in food and other industries is hampered by a lack of information about the strain-specificity of this fungus mycelium growth and its acquisition of various biological activities. Therefore, this research aimed to investigate mycelial growth of different P. ostreatus strains on varies solid and liquid media as well as to evaluate strains antagonistic, antibacterial, antiradical scavenging activities, and total phenolic content.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2024
The ivermectin is a potent nematocide and insecticide, which has low toxicity for humans and domestic animals, but due to low biotransformation, it can be dangerous for non-target organisms. The recent determination of ivermectin absorption and accumulation in tissues of higher plants and multiple shreds of evidence of its negative impact on plant physiology provide a basis for the search for ivermectin's molecular targets and mechanisms of action in plant cells. In this research, for the first time, the ivermectin effect on microtubules of Arabidopsis thaliana cells was studied.
View Article and Find Full Text PDFCamelina or false flax () is an emerging oilseed crop and a feedstock for biofuel production. This species is believed to originate from Western Asian and Eastern European regions, where the center of diversity of the genus is located. Cultivated species arose via a series of polyploidization events, serving as bottlenecks narrowing genetic diversity of the species.
View Article and Find Full Text PDFPlant systems have been considered valuable models for addressing fundamental questions of microtubule (MT) organization due to their considerable practical utility. Protein acetylation is a very common protein modification, and therate of acetylation can be modulated in cells in different biological states, and these changes can be detected at a molecular level. Here, we focused on K40, K112, and K394 residues as putative acetylation sites, which were shown to exist in both plants and mammals.
View Article and Find Full Text PDFNitric oxide and hydrogen sulfide, as important signaling molecules (gasotransmitters), are involved in many functions of plant organism, including adaptation to stress factors of various natures. As redox-active molecules, NO and HS are involved in redox regulation of functional activity of many proteins. They are also involved in maintaining cell redox homeostasis due to their ability to interact directly and indirectly (functionally) with ROS, thiols, and other molecules.
View Article and Find Full Text PDFCytokinin dehydrogenase/oxidase (CKX) enzymes play a key role in regulating cytokinin (CK) levels in plants by degrading the excess of this phytohormone. genes have proven an attractive target for genetic engineering, as their silencing boosts cytokinin accumulation in various tissues, thereby contributing to a rapid increase in biomass and overall plant productivity. We previously reported a similar effect in finger millet () somaclonal lines, caused by downregulation of and .
View Article and Find Full Text PDFStem rust is one wheat's most dangerous fungal diseases. Yield losses caused by stem rust have been significant enough to cause famine in the past. Some races of stem rust are considered to be a threat to food security even nowadays.
View Article and Find Full Text PDFQuantum dots, or nanoscale semiconductors, are one of the most important materials for various research and development purposes. Due to their advantageous photoluminescence and electronic properties, namely, their unique photostability, high brightness, narrow emission spectra from visible to near-infrared wavelengths, convey them significant advantages over widely used fluorochromes, including organic dyes, fluorescent probes. Quantum dots are a unique instrument for a wide range of immunoassays with antibodies.
View Article and Find Full Text PDFAg-based quantum dots (QDs) are semiconductor nanomaterials with exclusive electrooptical properties ideally adaptable for various biotechnological, chemical, and medical applications. Silver-based semiconductor nanocrystals have developed rapidly over the past decades. They have become a promising luminescent functional material for in vivo and in vitro fluorescent studies due to their ability to emit at the near-infrared (NIR) wavelength.
View Article and Find Full Text PDFThe inhibition of a bacterial cell division protein, filamentous temperature-sensitive Z (FtsZ), prevents the reproduction of . To propose potent inhibitors of FtsZ, the binding properties of FtsZ with various derivatives of Zantrin ZZ3 were investigated at an electronic level, using molecular simulations. We here employed protein-ligand docking, classical molecular mechanics (MM) optimizations, and ab initio fragment molecular orbital (FMO) calculations.
View Article and Find Full Text PDFThe plant cytoskeleton orchestrates such fundamental processes in cells as division, growth and development, polymer cross-linking, membrane anchorage, etc. Here, we describe the influence of Cd , Ni , Zn , and Cu on root development and vital organization of actin filaments into different cells of Arabidopsis thaliana line expressing GFP-FABD2. CdSO , NiSO , CuSO , and ZnSO were used in concentrations of 5-20 µM in this study.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disorder in the world, and there is currently no potent medicine for the treatment of ADs. Curcumin, a primary chemical contained in the ancient Indian herb known as turmeric, has been extensively studied and shown to be effective in inhibiting the aggregations of amyloid-β and tau proteins, both of which are observed in the brains of AD patients. In the present study, we focused on the tau protein and investigated its specific interactions with curcumin derivatives, using molecular simulations based on molecular docking, molecular mechanics and ab initio fragment molecular orbital calculations.
View Article and Find Full Text PDFCell Biol Int
June 2020
This survey paper contains a brief analysis of publications included in the special issue of the scientific journal Cell Biology International titled "Plant Cytoskeleton Structure, Dynamics and Functions". The manuscripts in this special issue reflect some new aspects of plant cytoskeleton organization, signaling and functioning, and results from different Ukrainian research groups, and focuses on bringing together scientists working across different instrumental scales.
View Article and Find Full Text PDFBrassinosteroids (BRs) are steroid hormones regulating various aspects of plant metabolism, including growth, development and stress responses. However, little is known about the mechanism of their impact on antioxidant systems and phospholipid turnover. Using tobacco plants overexpressing H/Cavacuolar Arabidopsis antiporter CAX1, we showed the role of Ca ion balance in the reactive oxygen species production and rapid phosphatidic acid accumulation induced by exogenous BR.
View Article and Find Full Text PDFWith the growing global demands on sustainable food production, one of the biggest challenges to agriculture is associated with crop losses due to parasitic nematodes. While chemical pesticides have been quite successful in crop protection and mitigation of damage from parasites, their potential harm to humans and environment, as well as the emergence of nematode resistance, have necessitated the development of viable alternatives to chemical pesticides. One of the most promising and targeted approaches to biocontrol of parasitic nematodes in crops is that of RNA interference (RNAi).
View Article and Find Full Text PDF