Publications by authors named "Blows M"

Additive genetic variance, , is the key parameter for predicting adaptive and neutral phenotypic evolution. Changes in demography (e.g.

View Article and Find Full Text PDF

The interaction of evolutionary processes to determine quantitative genetic variation has implications for contemporary and future phenotypic evolution, as well as for our ability to detect causal genetic variants. While theoretical studies have provided robust predictions to discriminate among competing models, empirical assessment of these has been limited. In particular, theory highlights the importance of pleiotropy in resolving observations of selection and mutation, but empirical investigations have typically been limited to few traits.

View Article and Find Full Text PDF

Characteristics of the new phenotypic variation introduced via mutation have broad implications in evolutionary and medical genetics. Standardized estimates of this mutational variance, VM, span 2 orders of magnitude, but the causes of this remain poorly resolved. We investigated estimate heterogeneity using 2 approaches.

View Article and Find Full Text PDF

Genetic variance is not equal for all multivariate combinations of traits. This inequality, in which some combinations of traits have abundant genetic variation while others have very little, biases the rate and direction of multivariate phenotypic evolution. However, we still understand little about what causes genetic variance to differ among trait combinations.

View Article and Find Full Text PDF

Adaptation to contrasting environments occurs when advantageous alleles accumulate in each population, but it remains largely unknown whether these same advantageous alleles create genetic incompatibilities that can cause intrinsic reproductive isolation leading to speciation. Identifying alleles that underlie both adaptation and reproductive isolation is further complicated by factors such as dominance and genetic interactions among loci, which can affect both processes differently and obscure potential links between adaptation and speciation. Here, we use a combination of field and glasshouse experiments to explore the connection between adaptation and speciation while accounting for dominance and genetic interactions.

View Article and Find Full Text PDF

There are essentially an infinite number of traits that could be measured on any organism, and almost all individual traits display genetic variation, yet substantial genetic variance in a large number of independent traits is not plausible under basic models of selection and mutation. One mechanism that may be invoked to explain the observed levels of genetic variance in individual traits is that pleiotropy results in fewer dimensions of phenotypic space with substantial genetic variance. Multivariate genetic analyses of small sets of functionally related traits have shown that standing genetic variance is often concentrated in relatively few dimensions.

View Article and Find Full Text PDF

Local adaptation can lead to genotype-by-environment interactions, which can create fitness tradeoffs in alternative environments, and govern the distribution of biodiversity across geographic landscapes. Exploring the ecological circumstances that promote the evolution of fitness tradeoffs requires identifying how natural selection operates and during which ontogenetic stages natural selection is strongest. When organisms disperse to areas outside their natural range, tradeoffs might emerge when organisms struggle to reach key life history stages, or alternatively, die shortly after reaching life history stages if there are greater risks of mortality associated with costs to developing in novel environments.

View Article and Find Full Text PDF

Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence.

View Article and Find Full Text PDF

Variational modules, sets of pleiotropically covarying traits, affect phenotypic evolution, and therefore are predicted to reflect functional modules, such that traits within a variational module also share a common function. Such an alignment of function and pleiotropy is expected to facilitate adaptation by reducing the deleterious effects of mutations, and by allowing coordinated evolution of functionally related sets of traits. Here, we adopt a high-dimensional quantitative genetic approach using a large number of gene expression traits in to test whether functional grouping, defined by gene ontology (GO terms), predicts variational modules.

View Article and Find Full Text PDF

Stabilizing selection is important in evolutionary theories of the maintenance of genetic variance and has been invoked as the key process determining macroevolutionary patterns of trait evolution. However, manipulative evidence for the extent of stabilizing selection, particularly on multivariate traits, is lacking. We used artificial disruptive selection in Drosophila serrata as a tool to determine the relative strength of stabilizing selection experienced by multivariate trait combinations with contrasting levels of genetic and mutational variance.

View Article and Find Full Text PDF

A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness.

View Article and Find Full Text PDF

The genetic basis of stochastic variation within a defined environment, and the consequences of such micro-environmental variance for fitness are poorly understood . Using a multigenerational breeding design in , we demonstrated that the micro-environmental variance in a set of morphological wing traits in a randomly mating population had significant additive genetic variance in most single wing traits. Although heritability was generally low (<1%), coefficients of additive genetic variance were of a magnitude typical of other morphological traits, indicating that the micro-environmental variance is an evolvable trait.

View Article and Find Full Text PDF

The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution.

View Article and Find Full Text PDF

Mate choice is a common feature of sexually reproducing species. In sessile or sedentary external fertilizers, however, direct interactions between reproductive partners are minimal, and instead mate recognition and choice must occur at the level of gametes. It is common for some sperm and egg combinations to have higher fertilization success than others, but it remains unclear whether differences in fertilization reflect gamete-level mate choice (GMC) for paternal quality or parental compatibility.

View Article and Find Full Text PDF

In accordance with the consensus that sexual selection is responsible for the rapid evolution of display traits on macroevolutionary scales, microevolutionary studies suggest sexual selection is a widespread and often strong form of directional selection in nature. However, empirical evidence for the contemporary evolution of sexually selected traits via sexual rather than natural selection remains weak. In this study, we used a novel application of quantitative genetic breeding designs to test for a genetic response to sexual selection on eight chemical display traits from a field population of the fly, Drosophila serrata.

View Article and Find Full Text PDF

Sexual selection on males is predicted to have widespread effects on genetic variation as a consequence of the pleiotropic allelic effects on sexual and nonsexual traits. We manipulated the opportunity for sexual selection on males during 27 generations of mutation accumulation in inbred lines of Drosophila serrata, and used a microarray platform to investigate the effect of sexual selection on the expression of 2689 genes. While gene expression signal was, on average, higher in the absence of sexual selection, this difference was small (0.

View Article and Find Full Text PDF

How new mutations contribute to genetic variation is a key question in biology. Although the evolutionary fate of an allele is largely determined by its heterozygous effect, most estimates of mutational variance and mutational effects derive from highly inbred lines, where new mutations are present in homozygous form. In an attempt to overcome this limitation, middle-class neighborhood (MCN) experiments have been used to assess the fitness effect of new mutations in heterozygous form.

View Article and Find Full Text PDF

A general observation emerging from estimates of additive genetic variance in sets of functionally or developmentally related traits is that much of the genetic variance is restricted to few trait combinations as a consequence of genetic covariance among traits. While this biased distribution of genetic variance among functionally related traits is now well documented, how it translates to the broader phenome and therefore any trait combination under selection in a given environment is unknown. We show that 8,750 gene expression traits measured in adult male Drosophila serrata exhibit widespread genetic covariance among random sets of five traits, implying that pleiotropy is common.

View Article and Find Full Text PDF

In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few.

View Article and Find Full Text PDF

The role of adaptation in biological invasions will depend on the availability of genetic variation for traits under selection in the new environment. Although genetic variation is present for most traits in most populations, selection is expected to act on combinations of traits, not individual traits in isolation. The distribution of genetic variance across trait combinations can be characterized by the empirical spectral distribution of the genetic variance-covariance (G) matrix.

View Article and Find Full Text PDF

After choosing a first mate, polyandrous females have access to a range of opportunities to bias paternity, such as repeating matings with the preferred male, facilitating fertilization from the best sperm or differentially investing in offspring according to their sire. Female ability to bias paternity after a first mating has been demonstrated in a few species, but unambiguous evidence remains limited by the access to complex behaviours, sperm storage organs and fertilization processes within females. Even when found at the phenotypic level, the potential evolution of any mechanism allowing females to bias paternity other than mate choice remains little explored.

View Article and Find Full Text PDF

Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle.

View Article and Find Full Text PDF

Genetic variation for individual traits is typically abundant, but for some multivariate combinations it is very low, suggesting that evolutionary limits might be generated by the geometric distribution of genetic variance. To test this prediction, we artificially selected along all eight genetic eigenvectors of a set of eight quantitative traits in Drosophila serrata. After six generations of 50% truncation selection, at least one replicate population of all treatments responded to selection, allowing us to reject a null genetic subspace as a cause of evolutionary constraint in this system.

View Article and Find Full Text PDF

The assumption that pleiotropic mutations are more deleterious than mutations with more restricted phenotypic effects is an important premise in models of evolution. However, empirical evidence supporting this assumption is limited. Here, we estimated the strength of stabilizing selection on mutations affecting gene expression in male Drosophila serrata.

View Article and Find Full Text PDF

Many traits studied in ecology and evolutionary biology change their expression in response to a continuously varying environmental factor. One well-studied example are thermal performance curves (TPCs); continuous reaction norms that describe the relationship between organismal performance and temperature and are useful for understanding the trade-offs involved in thermal adaptation. We characterized curves describing the thermal sensitivity of voluntary locomotor activity in a set of 66 spontaneous mutation accumulation lines in the fly Drosophila serrata.

View Article and Find Full Text PDF