Publications by authors named "Bloquel C"

Background: We have developed a nonviral gene therapy method based on the electrotransfer of plasmid in the ciliary muscle. These easily accessible smooth muscle cells could be turned into a biofactory for any therapeutic proteins to be secreted in a sustained manner in the ocular media.

Methods: Electrical conditions, design of electrodes, plasmid formulation, method and number of injections were optimized in vivo in the rat by localizing β-galactosidase expression and quantifying reporter (luciferase) and therapeutic (anti-tumor necrosis factor) proteins secretion in the ocular media.

View Article and Find Full Text PDF

Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes.

View Article and Find Full Text PDF

Background: Anti-inflammatory gene therapy is promising in inflammatory diseases such as rheumatoid arthritis (RA). We have previously demonstrated that intra-muscular (i.m.

View Article and Find Full Text PDF

Background: The tumor necrosis factor (TNF)-alpha plays a central role in rheumatoid arthritis (RA) and current biotherapies targeting TNF-alpha have a major impact on RA treatment. The long-term safety concerns associated with the repetitive TNF blockade prompt optimization of therapeutic anti-TNF approaches. Since we recently demonstrated that intra-articular gene transfer using a recombinant adeno-associated virus serotype 5 (rAAV5) efficiently transduces arthritic joints, we evaluate its effect on collagen-induced arthritis (CIA) when encoding TNF antagonists.

View Article and Find Full Text PDF

Electrotransfer and iontophoresis are being developed as innovative non-viral gene delivery systems for the treatment of eye diseases. These two techniques rely on the use of electric current to allow for higher transfection yield of various ocular cell types in vivo. Short pulses of relatively high-intensity electric fields are used for electrotransfer delivery, whereas the iontophoresis technique is based on the application of low voltage electric current.

View Article and Find Full Text PDF

An overview of ocular implants with therapeutic application potentials is provided. Various types of implants can be used as slow release devices delivering locally the needed drug for an extended period of time. Thus, multiple periocular or intraocular injections of the drug can be circumvented and secondary complications minimized.

View Article and Find Full Text PDF

Non-viral vectors for potential gene replacement and therapy have been developed in order to overcome the drawbacks of viral vectors. The diversity of non-viral vectors allows for a wide range of various products, flexibility of application, ease of use, low-cost of production and enhanced "genomic" safety. Using non-viral strategies, oligonucleotides (ODNs) can be delivered naked (less efficient) or entrapped in cationic lipids, polymers or peptides forming slow release delivery systems, which can be adapted according to the organ targeted and the therapy purposes.

View Article and Find Full Text PDF

An efficient and safe method to deliver DNA in vivo is a requirement for several purposes, such as study of gene function and gene therapy applications. Among the different non-viral delivery methods currently under investigation, in vivo DNA electrotransfer has proven to be one of the most efficient and simple. This technique is a physical method of gene delivery consisting in local application of electric pulses after DNA injection.

View Article and Find Full Text PDF

Background And Purpose: Activation of poly(ADP-ribose) polymerase (PARP) is deleterious during cerebral ischemia. We assessed the influence of PARP activation induced by cerebral ischemia on the synthesis of proinflammatory mediators including the cytokines, tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) and the adhesion molecules, E-selectin and intercellular adhesion molecule-1 (ICAM-1).

Experimental Approach: Ischemia was induced by intravascular occlusion of the left middle cerebral artery for 1 h in male Swiss mice anaesthetized with ketamine and xylazine.

View Article and Find Full Text PDF

Background: Optical imaging is an attractive non-invasive way to evaluate the expression of a transferred DNA, mainly thanks to its lower cost and ease of realization. In this study optical imaging was evaluated for monitoring and quantification of the mouse knee joint and tibial cranial muscle electrotransfer of a luciferase encoding plasmid. Optical imaging was applied to study the kinetics of luciferase expression in both tissues.

View Article and Find Full Text PDF

Due to its small size and particular isolating barriers, the eye is an ideal target for local therapy. Recombinant protein ocular delivery requires invasive and painful repeated injections. Alternatively, a transfected tissue might be used as a local producer of transgene-encoded therapeutic protein.

View Article and Find Full Text PDF

In vivo electrotransfer is a physical method of gene delivery in various tissues and organs, relying on the injection of a plasmid DNA followed by electric pulse delivery. The importance of the association between cell permeabilization and DNA electrophoresis for electrotransfer efficiency has been highlighted. In vivo electrotransfer is of special interest since it is the most efficient non-viral strategy of gene delivery and also because of its low cost, easiness of realization and safety.

View Article and Find Full Text PDF

Electrotransfer is a simple and efficient strategy of nonviral gene delivery. We have used this method to deliver plasmids encoding three human tumor necrosis factor-alpha soluble receptor I variants (hTNFR-Is) a monomeric hTNFR-Is, a chimeric hTNFR-Is/mIgG1, and a dimeric (hTNFR-Is)(2) form. Electrotransfer parameters were studied and because anti-TNF strategies have proven efficient for the treatment of rheumatoid arthritis in clinics, we used a collagen-induced arthritis (CIA) mouse model to assess the efficacy of our constructs in the treatment of the disease.

View Article and Find Full Text PDF

Background: Gene therapy is very promising in the treatment of rheumatoid arthritis (RA). Electrotransfer is a recent method reported to enhance in vivo intramuscular DNA transfection. Interleukin-10 (IL-10) has antiinflammatory effects in RA and in collagen-induced arthritis (CIA), a murine model of RA.

View Article and Find Full Text PDF