Studies in humans and animals have demonstrated that infection with helminths (parasitic worms) is protective against a range of hyperinflammatory diseases. A number of factors limit translation into clinical use, including: potential contamination of helminths obtained from infected humans or animals, lack of batch to batch stability, and potential pathological risks derived from live worm infections. To overcome these limitations we tested whether an antigen homogenate of the non-pathogenic nematode confers protection against type 1 diabetes mellitus (T1D) using the Non Obese Diabetic (NOD) mouse model.
View Article and Find Full Text PDFIn this study, we evaluated the effect chronic helminth infection has on allergic disease in mice previously sensitized to OVA. Ten weeks of infection with Litomosoides sigmodontis reduced immunological markers of type I hypersensitivity, including OVA-specific IgE, basophil activation, and mast cell degranulation. Despite these reductions, there was no protection against immediate clinical hypersensitivity following intradermal OVA challenge.
View Article and Find Full Text PDFBasophils are increasingly recognized as playing important roles in the immune response toward helminths. In this study, we evaluated the role of basophils in vaccine-mediated protection against filariae, tissue-invasive parasitic nematodes responsible for diseases such as elephantiasis and river blindness. Protective immunity and immunological responses were assessed in BALB/c mice vaccinated with irradiated L3 stage larvae and depleted of basophils with weekly injections of anti-CD200R3 antibody.
View Article and Find Full Text PDF