Remote sensing and modelling of land use/land cover (LULC) change is useful to reveal the extent and spatial patterns of landscape changes at various environments and scales. Predicting susceptibility to LULC change is crucial for policy formulation and land management. However, the use of machine learning (ML) for modelling LULC change is limited.
View Article and Find Full Text PDFWhen wildfires are controlled, they are integral to the existence of savannah ecosystems and play an intrinsic role in maintaining their structure and function. Ample studies on wildfire detection and severity mapping are available but what remains a challenge is the accurate mapping of burnt areas in heterogenous landscapes. In this study, we tested which spectral bands contributed most to burnt area detection when using Sentinel-2 and Landsat 8 multispectral sensors in two study sites.
View Article and Find Full Text PDFBackground: Reliable mapping of soil-transmitted helminth (STH) parasites requires rigorous statistical and machine learning algorithms capable of integrating the combined influence of several determinants to predict distributions. This study tested whether combining edaphic predictors with relevant environmental predictors improves model performance when predicting the distribution of STH, Ascaris lumbricoides and hookworms at a national scale in Zimbabwe.
Methods: Geo-referenced parasitological data obtained from a 2010/2011 national survey indicating a confirmed presence or absence of STH among school children aged 10-15 years was used to calibrate ten species distribution models (SDMs).