Publications by authors named "Blerina Sinaimeri"

Many important aspects of biological knowledge at the molecular level can be represented by . Through their analysis, we gain mechanistic insights and interpret lists of interesting genes from experiments (usually omics and functional genomic experiments). As a result, pathways play a central role in the development of bioinformatics methods and tools for computing predictions from known molecular-level mechanisms.

View Article and Find Full Text PDF

Phylogenetic tree reconciliation is extensively employed for the examination of coevolution between host and symbiont species. An important concern is the requirement for dependable cost values when selecting event-based parsimonious reconciliation. Although certain approaches deduce event probabilities unique to each pair of host and symbiont trees, which can subsequently be converted into cost values, a significant limitation lies in their inability to model the invasion of diverse host species by the same symbiont species (termed as a spread event), which is believed to occur in symbiotic relationships.

View Article and Find Full Text PDF

Background: Cophylogeny reconciliation is a powerful method for analyzing host-parasite (or host-symbiont) co-evolution. It models co-evolution as an optimization problem where the set of all optimal solutions may represent different biological scenarios which thus need to be analyzed separately. Despite the significant research done in the area, few approaches have addressed the problem of helping the biologist deal with the often huge space of optimal solutions.

View Article and Find Full Text PDF

Cytoplasmic incompatibility (CI) relates to the manipulation by the parasite of its host reproduction. Despite its widespread occurrence, the molecular basis of CI remains unclear and theoretical models have been proposed to understand the phenomenon. We consider in this paper the quantitative Lock-Key model which currently represents a good hypothesis that is consistent with the data available.

View Article and Find Full Text PDF

Motivation: Phylogenetic tree reconciliation is the method of choice in analyzing host-symbiont systems. Despite the many reconciliation tools that have been proposed in the literature, two main issues remain unresolved: (i) listing suboptimal solutions (i.e.

View Article and Find Full Text PDF

Tree reconciliation is the mathematical tool that is used to investigate the coevolution of organisms, such as hosts and parasites. A common approach to tree reconciliation involves specifying a model that assigns costs to certain events, such as cospeciation, and then tries to find a mapping between two specified phylogenetic trees which minimizes the total cost of the implied events. For such models, it has been shown that there may be a huge number of optimal solutions, or at least solutions that are close to optimal.

View Article and Find Full Text PDF

The aim of this paper is to explore the robustness of the parsimonious host-symbiont tree reconciliation method under editing or small perturbations of the input. The editing involves making different choices of unique symbiont mapping to a host in the case where multiple associations exist. This is made necessary by the fact that the tree reconciliation model is currently unable to handle such associations.

View Article and Find Full Text PDF

Background: The main challenge in de novo genome assembly of DNA-seq data is certainly to deal with repeats that are longer than the reads. In de novo transcriptome assembly of RNA-seq reads, on the other hand, this problem has been underestimated so far. Even though we have fewer and shorter repeated sequences in transcriptomics, they do create ambiguities and confuse assemblers if not addressed properly.

View Article and Find Full Text PDF

Background: Phylogenetic tree reconciliation is the approach of choice for investigating the coevolution of sets of organisms such as hosts and parasites. It consists in a mapping between the parasite tree and the host tree using event-based maximum parsimony. Given a cost model for the events, many optimal reconciliations are however possible.

View Article and Find Full Text PDF