Publications by authors named "Bleichner M"

A comprehensive analysis of everyday sound perception can be achieved using electroencephalography (EEG) with the concurrent acquisition of information about the environment. While extensive research has been dedicated to speech perception, the complexities of auditory perception within everyday environments, specifically the types of information and the key features to extract, remain less explored. Our study aims to systematically investigate the relevance of different feature categories: discrete sound-identity markers, general cognitive state information, and acoustic representations, including discrete sound onset, the envelope, and mel-spectrogram.

View Article and Find Full Text PDF

Surgical personnel face various stressors in the workplace, including environmental sounds. Mobile electroencephalography (EEG) offers a promising approach for objectively measuring how individuals perceive sounds. Because surgical performance does not necessarily decrease with higher levels of distraction, EEG could help guide noise reduction strategies that are independent of performance measures.

View Article and Find Full Text PDF

Introduction: In demanding work situations (e.g., during a surgery), the processing of complex soundscapes varies over time and can be a burden for medical personnel.

View Article and Find Full Text PDF

. Mobile ear-EEG provides the opportunity to record EEG unobtrusively in everyday life. However, in real-life, the EEG data quickly becomes difficult to interpret, as the neural signal is contaminated by other, non-neural signal contributions.

View Article and Find Full Text PDF

Introduction: As our attention is becoming a commodity that an ever-increasing number of applications are competing for, investing in modern day tools and devices that can detect our mental states and protect them from outside interruptions holds great value. Mental fatigue and distractions are impacting our ability to focus and can cause workplace injuries. Electroencephalography (EEG) may reflect concentration, and if EEG equipment became wearable and inconspicuous, innovative brain-computer interfaces (BCI) could be developed to monitor mental load in daily life situations.

View Article and Find Full Text PDF
Article Synopsis
  • People hear sounds differently, which can affect how they concentrate on things, like ignoring construction noise or being distracted by it.
  • Researchers used a special smartphone tool called ear-EEG to study how people process sounds in both a lab and in their daily life.
  • They found that people's responses to sounds changed based on whether they had a task to do and were affected by background noise, but didn't see strong reactions to unexpected environmental sounds.
View Article and Find Full Text PDF

Wearable electroencephalography (EEG) has the potential to improve everyday life through brain-computer interfaces (BCI) for applications such as sleep improvement, adaptive hearing aids, or thought-based digital device control. To make these innovations more practical for everyday use, researchers are looking to miniaturized, concealed EEG systems that can still collect neural activity precisely. For example, researchers are using flexible EEG electrode arrays that can be attached around the ear (cEEGrids) to study neural activations in everyday life situations.

View Article and Find Full Text PDF

The c-grid (ear-electroencephalography, sold under the name cEEGrid) is an unobtrusive and comfortable electrode array that can be used for investigating brain activity after affixing around the ear. The c-grid is suitable for use outside of the laboratory for long durations, even for the whole day. Various cognitive processes can be studied using these grids, as shown by previous research, including research beyond the lab.

View Article and Find Full Text PDF

As the field of educational neuroscience continues to grow, questions have emerged regarding the ecological validity and applicability of this research to educational practice. Recent advances in mobile neuroimaging technologies have made it possible to conduct neuroscientific studies directly in naturalistic learning environments. We propose that embedding mobile neuroimaging research in a cycle (Matusz, Dikker, Huth, & Perrodin, 2019), involving lab-based, seminaturalistic, and fully naturalistic experiments, is well suited for addressing educational questions.

View Article and Find Full Text PDF

. Ear-EEG (electroencephalography) allows to record brain activity using only a few electrodes located close to the ear. Ear-EEG is comfortable and easy to apply, facilitating beyond-the-lab EEG recordings in everyday life.

View Article and Find Full Text PDF

With smartphone-based mobile electroencephalography (EEG), we can investigate sound perception beyond the lab. To understand sound perception in the real world, we need to relate naturally occurring sounds to EEG data. For this, EEG and audio information need to be synchronized precisely, only then it is possible to capture fast and transient evoked neural responses and relate them to individual sounds.

View Article and Find Full Text PDF

The streaming and recording of smartphone sensor signals is desirable for mHealth, telemedicine, environmental monitoring and other applications. Time series data gathered in these fields typically benefit from the time-synchronized integration of different sensor signals. However, solutions required for this synchronization are mostly available for stationary setups.

View Article and Find Full Text PDF

A comfortable, discrete and robust recording of the sleep EEG signal at home is a desirable goal but has been difficult to achieve. We investigate how well flex-printed electrodes are suitable for sleep monitoring tasks in a smartphone-based home environment. The cEEGrid ear-EEG sensor has already been tested in the laboratory for measuring night sleep.

View Article and Find Full Text PDF

Interpersonal synchrony refers to the temporal coordination of actions between individuals and is a common feature of social behaviors, from team sport to ensemble music performance. Interpersonal synchrony of many rhythmic (periodic) behaviors displays dynamics of coupled biological oscillators. The current study addresses oscillatory dynamics on the levels of brain and behavior between music duet partners performing at spontaneous (uncued) rates.

View Article and Find Full Text PDF
Article Synopsis
  • Most research on how we hear sounds happens in labs, but this study looked at hearing in real life using a smartphone device that tracks brain activity.
  • Twelve people took part in two types of listening tasks where they had to notice special sounds while ignoring others, both in focused settings and while going about their usual workday.
  • The results showed that people paid more attention and responded quicker to sounds when they were focused, but they could still hear in normal conditions, proving that studying how we hear outside the lab is possible.
View Article and Find Full Text PDF

Ear-EEG allows to record brain activity in every-day life, for example to study natural behaviour or unhindered social interactions. Compared to conventional scalp-EEG, ear-EEG uses fewer electrodes and covers only a small part of the head. Consequently, ear-EEG will be less sensitive to some cortical sources.

View Article and Find Full Text PDF

Listeners differ in their ability to attend to a speech stream in the presence of a competing sound. Differences in speech intelligibility in noise cannot be fully explained by the hearing ability which suggests the involvement of additional cognitive factors. A better understanding of the temporal fluctuations in the ability to pay selective auditory attention to a desired speech stream may help in explaining these variabilities.

View Article and Find Full Text PDF

Cognitive flexibility is the ability to switch between different concepts or to adapt goal-directed behavior in a changing environment. Although, cognitive research on this ability has long been focused on the individual mind, it is becoming increasingly clear that cognitive flexibility plays a central role in our social life. This is particularly evident in turn-taking in verbal conversation, where cognitive flexibility of the individual becomes part of social flexibility in the dyadic interaction.

View Article and Find Full Text PDF

Our aim in the present study is to measure neural correlates during spontaneous interactive sentence production. We present a novel approach using the word-by-word technique from improvisational theatre, in which two speakers jointly produce one sentence. This paradigm allows the assessment of behavioural aspects, such as turn-times, and electrophysiological responses, such as event-related-potentials (ERPs).

View Article and Find Full Text PDF

We introduce here the word-by-word paradigm, a dynamic setting, in which two people take turns in producing a single sentence. This task requires a high degree of coordination between the partners and the simplicity of the task allows us to study with sufficient experimental control behavioral and neural processes that underlie this controlled interaction. For this study, 13 pairs of individuals engaged in a scripted word-by-word interaction, while we recorded the neural activity of both participants simultaneously using wireless EEG.

View Article and Find Full Text PDF

Electroencephalography (EEG) data can be used to decode an attended speech source in normal-hearing (NH) listeners using high-density EEG caps, as well as around-the-ear EEG devices. The technology may find application in identifying the target speaker in a cocktail party like scenario and steer speech enhancement algorithms in cochlear implants (CIs). However, the worse spectral resolution and the electrical artifacts introduced by a CI may limit the applicability of this approach to CI users.

View Article and Find Full Text PDF

Artifact Subspace Reconstruction (ASR) is an adaptive method for the online or offline correction of artifacts comprising multichannel electroencephalography (EEG) recordings. It repeatedly computes a principal component analysis (PCA) on covariance matrices to detect artifacts based on their statistical properties in the component subspace. We adapted the existing ASR implementation by using Riemannian geometry for covariance matrix processing.

View Article and Find Full Text PDF

Objective: In the long term it is desirable for CI users to control their device via brain signals. A possible strategy is the use of auditory evoked potentials (AEPs). Several studies have shown the suitability of auditory paradigms for such an approach.

View Article and Find Full Text PDF