Appl Environ Microbiol
April 2018
Gutless phallodrilines are marine annelid worms without a mouth or gut, which live in an obligate association with multiple bacterial endosymbionts that supply them with nutrition. In this study, we discovered an unusual symbiont community in the gutless phallodriline that differs markedly from the microbiomes of all 22 of the other host species examined. Comparative 16S rRNA gene sequence analysis and fluorescence hybridization revealed that harbors cooccurring gamma-, alpha-, and deltaproteobacterial symbionts, while all other known host species harbor gamma- and either alpha- or deltaproteobacterial symbionts.
View Article and Find Full Text PDFThe level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur-oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto- and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes.
View Article and Find Full Text PDFSulfate-reducing prokaryotes (SRP) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. However their abundance and diversity in subsurface marine sediments is poorly understood. In this study, the abundance and diversity of the functional genes for the enzymes adenosine 5'-phosphosulfate reductase (aprA) and dissimilatory sulfite reductase (dsrA) of SRP in marine sediments of the Peru continental margin and the Black Sea were analyzed, including samples from the deep biosphere (ODP site 1227).
View Article and Find Full Text PDFFor the first time quantitative data on the abundance of Bacteria, Archaea, and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR, Q-PCR and catalyzed reporter deposition-fluorescence in situ hybridization, CARD-FISH). The oligotrophic (organic carbon content of ∼0.2%) deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006.
View Article and Find Full Text PDFSequences of members of the bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi are frequently found in 16S rRNA gene clone libraries obtained from marine sediments. Using a newly designed quantitative, real-time PCR assay, these bacterial groups were jointly quantified in samples from near-surface and deeply buried marine sediments from the Peru margin, the Black Sea, and a forearc basin off the island of Sumatra. In near-surface sediments, sequences of the JS-1 as well as Anaerolineae- and Caldilineae-related Bacteria were quantified with significantly lower 16S rRNA gene copy numbers than the sequences of total Bacteria.
View Article and Find Full Text PDFThe subseafloor microbial communities in the turbidite depositional basins Brazos-Trinity Basin IV (BT Basin) and the Mars-Ursa Basin (Ursa Basin) on the Gulf of Mexico continental slope (IODP holes U1319A, U1320A, U1322B and U1324B) were investigated by PCR-dependent molecular analyses targeted to the small subunit (SSU) rRNA genes, dsrA and mcrA, and hydrogenase activity measurements. Biomass at both basins was very low, with the maximum cell or the SSU rRNA gene copy number <1 x 10(7) cells mL(-1) or copies g(-1) sediments, respectively. Hydrogenase activity correlated with biomass estimated by SSU rRNA gene copy number when all data sets were combined.
View Article and Find Full Text PDFThe Porcupine Seabight Challenger Mound is the first carbonate mound to be drilled (approximately 270 m) and analyzed in detail microbiologically and biogeochemically. Two mound sites and a non-mound Reference site were analyzed with a range of molecular techniques [catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative PCR (16S rRNA and functional genes, dsrA and mcrA), and 16S rRNA gene PCR-DGGE] to assess prokaryotic diversity, and this was compared with the distribution of total and culturable cell counts, radiotracer activity measurements and geochemistry. There was a significant and active prokaryotic community both within and beneath the carbonate mound.
View Article and Find Full Text PDFGutless oligochaetes are small marine worms that live in obligate associations with bacterial endosymbionts. While symbionts from several host species belonging to the genus Olavius have been described, little is known of the symbionts from the host genus Inanidrilus. In this study, the diversity of bacterial endosymbionts in Inanidrilus leukodermatus from Bermuda and Inanidrilus makropetalos from the Bahamas was investigated using comparative sequence analysis of the 16S rRNA gene and fluorescence in situ hybridization.
View Article and Find Full Text PDFBathymodiolus azoricus and Bathymodiolus puteoserpentis are symbiont-bearing mussels that dominate hydrothermal vent sites along the northern Mid-Atlantic Ridge (MAR). Both species live in symbiosis with two physiologically and phylogenetically distinct Gammaproteobacteria: a sulfur-oxidizing chemoautotroph and a methane-oxidizer. A detailed analysis of mussels collected from four MAR vent sites (Menez Gwen, Lucky Strike, Rainbow, and Logatchev) using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization (FISH) showed that the two mussel species share highly similar to identical symbiont phylotypes.
View Article and Find Full Text PDFOlavius crassitunicatus is a small symbiont-bearing worm that occurs at high abundance in oxygen-deficient sediments in the East Pacific Ocean. Using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization, we examined the diversity and phylogeny of bacterial symbionts in two geographically distant O. crassitunicatus populations (separated by 385 km) on the Peru margin (water depth, approximately 300 m).
View Article and Find Full Text PDF