Publications by authors named "Blazej Grabowski"

The knowledge of diffusion mechanisms in materials is crucial for predicting their high-temperature performance and stability, yet accurately capturing the underlying physics like thermal effects remains challenging. In particular, the origin of the experimentally observed non-Arrhenius diffusion behavior has remained elusive, largely due to the lack of effective computational tools. Here we propose an efficient ab initio framework to compute the Gibbs energy of the transition state in vacancy-mediated diffusion including the relevant thermal excitations at the density-functional-theory level.

View Article and Find Full Text PDF

Melting properties are critical for designing novel materials, especially for discovering high-performance, high-melting refractory materials. Experimental measurements of these properties are extremely challenging due to their high melting temperatures. Complementary theoretical predictions are, therefore, indispensable.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on synthesizing a new oxyfluoride compound, LaBaInOF, through a low-temperature reaction involving a known oxide and a fluorinating agent, leading to the substitution of oxide ions with fluoride ions.
  • Characterization techniques revealed that the fluorination process changes the material's symmetry and structure, resulting in disorder among anions, which significantly impacts its optical properties.
  • Both the original oxide and the newly formed oxyfluoride are shown to be effective for photocatalytic hydrogen evolution, demonstrating that altering anion composition can modify the material's photocatalytic performance.
View Article and Find Full Text PDF

From reaction of excess lithium with tin, we isolate well-crystallized LiSn and solve the crystal structure from single-crystal X-ray diffraction data. The orthorhombic structure (space group ) features the same coordination polyhedra around tin and lithium as previously predicted by electronic structure calculations for this composition, however differently arranged. An extensive analysis, including thermodynamic integration using Langevin dynamics in combination with a machine-learning potential (moment tensor potential), is conducted to understand the thermodynamic stability of this LiSn structure observed in our experiments.

View Article and Find Full Text PDF

A vacancy-ordered perovskite-type compound BaFeO (BaFeO) was prepared by oxidizing BaFeO (2/) with the latter compound obtained by a spray pyrolysis technique. The structure of BaFeO was found to be isotypic to BaFeOF (2/) and can be written as BaFeFeO. Mössbauer spectroscopy and calculations were used to confirm mixed iron oxidation states, showing allocation of the tetravalent iron species on the tetrahedral site, and octahedral as well as square pyramidal coordination for the trivalent species within a G-type antiferromagnetic ordering.

View Article and Find Full Text PDF

We present a first-principles assessment of the finite-temperature thermodynamic properties of the intermetallic Al3Sc phase including the complete spectrum of excitations and compare the theoretical findings with our dilatometric and calorimetric measurements. While significant electronic contributions to the heat capacity and thermal expansion are observed near the melting temperature, anharmonic contributions, and electron-phonon coupling effects are found to be relatively small. On the one hand, these accurate methods are used to demonstrate shortcomings of empirical predictions of phase stabilities such as the Neumann-Kopp rule.

View Article and Find Full Text PDF

A new vacancy ordered, anion deficient perovskite modification with composition of BaCoO (Ba Co O □ ) has been prepared via a two-step heating process. Combined Rietveld analysis of neutron and X-ray powder diffraction data shows a novel ordering of oxygen vacancies not known before for barium cobaltates. A combination of neutron powder diffraction, magnetic measurements, and density functional theory (DFT) studies confirms G-type antiferromagnetic ordering.

View Article and Find Full Text PDF

We obtain phonon lifetimes in aluminium by inelastic neutron scattering experiments, by ab initio molecular dynamics, and by perturbation theory. At elevated temperatures significant discrepancies are found between experiment and perturbation theory, which disappear when using molecular dynamics due to the inclusion of full anharmonicity and the correct treatment of the multiphonon background. We show that multiple-site interactions are small and that local pairwise anharmonicity dominates phonon-phonon interactions, which permits an efficient computation of phonon lifetimes.

View Article and Find Full Text PDF

We study the mutual coupling of spin fluctuations and lattice vibrations in paramagnetic CrN by combining atomistic spin dynamics and ab initio molecular dynamics. The two degrees of freedom are dynamically coupled, leading to nonadiabatic effects. Those effects suppress the phonon lifetimes at low temperature compared to an adiabatic approach.

View Article and Find Full Text PDF

We test a hypothesis to explain why Ti-6242 is susceptible to cold dwell fatigue (CDF), whereas Ti-6246 is not. The hypothesis is that, in Ti-6246, substitutional Mo-atoms in α-Ti grains trap vacancies, thereby limiting creep relaxation. In Ti-6242, this creep relaxation enhances the loading of grains unfavourably oriented for slip and they subsequently fracture.

View Article and Find Full Text PDF

Multi-principle element alloys have enormous potential, but their exploration suffers from the tremendously large range of configurations. In the last decade such alloys have been designed with a focus on random solid solutions. Here we apply an experimentally verified, combined thermodynamic and first-principles design strategy to reverse the traditional approach and to generate a new type of hcp Al-Hf-Sc-Ti-Zr high entropy alloy with a hitherto unique structure.

View Article and Find Full Text PDF

Martensite steel is induced from pearlitic steel by a newly discovered method, which is completely different from the traditional route of quenching austenitic steel. Both experimental and theoretical studies demonstrate that Fe-C martensite forms by severe deformation at room temperature. The new mechanism identified here opens a paths to material-design strategies based on deformation-driven nanoscale phase transformations.

View Article and Find Full Text PDF

Phase-change materials are characterized by a unique property portfolio well suited for data storage applications. Here, a first treasure map for phase-change materials is presented on the basis of a fundamental understanding of the bonding characteristics. This map is spanned by two coordinates that can be calculated just from the composition, and represent the degree of ionicity and the tendency towards hybridization ('covalency') of the bonding.

View Article and Find Full Text PDF

Ni(2)MnGa is a typical example of a Heusler alloy that undergoes a martensitic transformation. In the high temperature austenitic phase it has a cubic L2(1) structure, whereas below 200 K the symmetry is reduced by an orthorhombic distortion. Despite lattice deformations of more than 6% and large strains connected to this change, it is completely reversible.

View Article and Find Full Text PDF