This study demonstrates the successful synthesis of Ni/YO nanocomposite particles through the application of ultrasound-assisted precipitation using the ultrasonic spray pyrolysis technique. They were collected in a water suspension with polyvinylpyrrolidone (PVP) as the stabiliser. The presence of the YO core and Ni shell was confirmed with transmission electron microscopy (TEM) and with electron diffraction.
View Article and Find Full Text PDFIn this work, we developed a numerical approach based on an experimental platform to determine the working conditions on a cryoplatform and to predict and evaluate the cryogenic printing of hydrogels. Although hydrogels have good biocompatibility, their material properties make it difficult to print them with high precision and shape fidelity. To overcome these problems, a cryogenic cooling platform was introduced to accelerate the physical stabilisation of each deposited layer during the printing process.
View Article and Find Full Text PDFModeling lyophilization in a vial is frequently done on a single vial level. When setting up a numerical model, the main focus is on heat and mass transfer inside the lyophilizate, whereas the vapor dynamics in the headspace of the vial is taken into account simply through imposing the system pressure as a pressure boundary condition. The present paper offers a deeper insight into the interaction of the sublimated vapor flow and the corresponding vapor pressure conditions inside the headspace of a partially stoppered vial.
View Article and Find Full Text PDF