In the recycling of end-of-life rare-earth magnets, the recovery of non-rare earth constituents is often neglected. In the present study, strong cation and anion exchange resins were tested batchwise for the recovery of the non-rare-earth constituents of permanent magnets (copper, cobalt, manganese, nickel and iron) from synthetic aqueous and ethanolic solutions. The cation exchange resin recovered most of metal ions from aqueous and ethanolic feeds, whereas the anion exchange resin could selectively recover copper and iron from ethanolic feeds.
View Article and Find Full Text PDFDesigning useful functionalities in clinically validated, old antibiotics holds promise to provide the most economical solution for the global lack of effective antibiotics, as undoubtedly a serious health threat. Here we show that using the surface chemistry of the cyclodextrin (βCD) cycle and arginine (arg) as a linker, provides more stable ternary antibiotic complex (βCD-arg-cpx). In contrast to classical less stable inclusion complexes, which only modify antibiotic solubility, here-presented ternary complex is more stable and controls drug release.
View Article and Find Full Text PDF