The purpose of this study was to use wearable technology data to quantify alterations in subject-specific running patterns throughout a marathon race and to determine if runners could be clustered into subgroups based on similar trends in running gait alterations throughout the marathon. Using a wearable sensor, data were collected for cadence, braking, bounce, pelvic rotation, pelvic drop, and ground contact time for 27 runners. A composite index was calculated based on the "typical" data (4-14 km) for each runner and evaluated for 14 individual 2-km sections thereafter to detect "atypical" data (ie, higher indices).
View Article and Find Full Text PDFBackground: Muscle strengthening exercises consistently demonstrate improvements in the pain and function of adults with knee osteoarthritis, but individual response rates can vary greatly. Identifying individuals who are more likely to respond is important in developing more efficient rehabilitation programs for knee osteoarthritis. Therefore, the purpose of this study was to determine if pre-intervention multi-sensor accelerometer data (e.
View Article and Find Full Text PDFAn ongoing challenge in the application of gait analysis to clinical settings is the standardized detection of temporal events, with unobtrusive and cost-effective equipment, for a wide range of gait types. The purpose of the current study was to investigate a targeted machine learning approach for the prediction of timing for foot strike (or initial contact) and toe-off, using only kinematics for walking, forefoot running, and heel-toe running. Data were categorized by gait type and split into a training set (∼30%) and a validation set (∼70%).
View Article and Find Full Text PDFBMC Musculoskelet Disord
April 2016
Background: Females have a two-fold risk of developing knee osteoarthritis (OA) as compared to their male counterparts and atypical walking gait biomechanics are also considered a factor in the aetiology of knee OA. However, few studies have investigated sex-related differences in walking mechanics for patients with knee OA and of those, conflicting results have been reported. Therefore, this study was designed to examine the differences in gait kinematics (1) between male and female subjects with and without knee OA and (2) between healthy gender-matched subjects as compared with their OA counterparts.
View Article and Find Full Text PDFIn order to provide effective test-retest and pooling of information from clinical gait analyses, it is critical to ensure that the data produced are as reliable as possible. Furthermore, it has been shown that anatomical marker placement is the largest source of inter-examiner variance in gait analyses. However, the effects of specific, known deviations in marker placement on calculated kinematic variables are unclear, and there is currently no mechanism to provide location-based feedback regarding placement consistency.
View Article and Find Full Text PDFThe purpose of this study was to validate measures of vertical oscillation (VO) and ground contact time (GCT) derived from a commercially-available, torso-mounted accelerometer compared with single marker kinematics and kinetic ground reaction force (GRF) data. Twenty-two semi-elite runners ran on an instrumented treadmill while GRF data (1000 Hz) and three-dimensional kinematics (200 Hz) were collected for 60 s across 5 different running speeds ranging from 2.7 to 3.
View Article and Find Full Text PDFPrevious studies have demonstrated distinct clusters of gait patterns in both healthy and pathological groups, suggesting that different movement strategies may be represented. However, these studies have used discrete time point variables and usually focused on only one specific joint and plane of motion. Therefore, the first purpose of this study was to determine if running gait patterns for healthy subjects could be classified into homogeneous subgroups using three-dimensional kinematic data from the ankle, knee, and hip joints.
View Article and Find Full Text PDFObjective: Muscle strengthening exercises have been shown to improve pain and function in adults with mild-to-moderate knee osteoarthritis, but individual response rates can vary greatly. Predicting individuals who respond and those who do not is important in developing a more efficient and effective model of care for knee osteoarthritis (OA). Therefore, the purpose of this study was to use pre-intervention gait kinematics and patient-reported outcome measures to predict post-intervention response to a 6-week hip strengthening exercise intervention in patients with mild-to-moderate knee OA.
View Article and Find Full Text PDFRecently, a principal component analysis (PCA) approach has been used to provide insight into running pathomechanics. However, researchers often account for nearly all of the variance from the original data using only the first few, or lower-order principal components (PCs), which are often associated with the most dominant movement patterns. In contrast, intermediate- and higher-order PCs are generally associated with subtle movement patterns and may contain valuable information about between-group variation and specific test conditions.
View Article and Find Full Text PDFProsthet Orthot Int
December 2016
Background: Over-the-counter foot orthoses are a cost-effective alternative to custom-made devices. However, few studies have compared over-the-counter devices and most biomechanical research involving orthoses has focused on rearfoot biomechanics.
Objectives: To determine changes in multi-segment foot biomechanics during shod walking in three commercially available over-the-counter devices: SOLE, SuperFeet and Powerstep when compared to no orthotic.
Female runners have a two-fold risk of sustaining certain running-related injuries as compared to their male counterparts. Thus, a comprehensive understanding of the sex-related differences in running kinematics is necessary. However, previous studies have either used discrete time point variables and inferential statistics and/or relatively small subject numbers.
View Article and Find Full Text PDFAs 3-dimensional (3D) motion-capture for clinical gait analysis continues to evolve, new methods must be developed to improve the detection of gait cycle events based on kinematic data. Recently, the application of principal component analysis (PCA) to gait data has shown promise in detecting important biomechanical features. Therefore, the purpose of this study was to define a new foot strike detection method for a continuum of striking techniques, by applying PCA to joint angle waveforms.
View Article and Find Full Text PDFAccelerometers are increasingly used tools for gait analysis, but there remains a lack of research on their application to running and their ability to classify running patterns. The purpose of this study was to conduct an exploratory examination into the capability of a tri-axial accelerometer to classify runners of different training backgrounds and experience levels, according to their 3-dimensional (3D) accelerometer data patterns. Training background was examined with 14 competitive soccer players and 12 experienced marathon runners, and experience level was examined with 16 first-time and the same 12 experienced marathon runners.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
August 2015
As biomechanical research evolves, a continuing challenge is the standardization of data collection and analysis techniques. In gait analysis, placement of markers to construct an anatomical model has been identified as the single greatest source of error; however, there is currently no standardized approach to quantifying these errors. The current study applies morphometric methods, including a generalized Procrustes analysis (GPA) and a nearest neighbour comparison to quantify discrepancies in marker placement, with the goal of improving reliability in gait analysis.
View Article and Find Full Text PDFObjective: To compare lower-limb kinematic asymmetries during gait in individuals with unilateral and bilateral symptomatic osteoarthritis and controls.
Design: Cross-sectional.
Setting: Laboratory.