Publications by authors named "Blasie J"

Available experimental techniques cannot determine high-resolution three-dimensional structures of membrane proteins under a transmembrane voltage. Hence, the mechanism by which voltage-gated cation channels couple conformational changes within the four voltage sensor domains, in response to either depolarizing or polarizing transmembrane voltages, to opening or closing of the pore domain's ion channel remains unresolved. Single-membrane specimens, composed of a phospholipid bilayer containing a vectorially oriented voltage-gated K channel protein at high in-plane density tethered to the surface of an inorganic multilayer substrate, were developed to allow the application of transmembrane voltages in an electrochemical cell.

View Article and Find Full Text PDF

The mechanism of electromechanical coupling for voltage-gated ion channels (VGICs) involved in neurological signal transmission, primarily Nav- and Kv-channels, remains unresolved. Anesthetics have been shown to directly impact this mechanism, at least for Kv-channels. Molecular dynamics computer simulations can now predict the structures of VGICs embedded within a hydrated phospholipid bilayer membrane as a function of the applied transmembrane voltage, but significant assumptions are still necessary.

View Article and Find Full Text PDF

The voltage sensor domain (VSD) of voltage-gated cation (e.g., Na(+), K(+)) channels central to neurological signal transmission can function as a distinct module.

View Article and Find Full Text PDF

The profile structure of a hybrid lipid bilayer, tethered to the surface of an inorganic substrate and fully hydrated with a bulk aqueous medium in an electrochemical cell, was investigated as a function of the applied transbilayer electric potential via time-resolved neutron reflectivity, enhanced by interferometry. Significant, and fully reversible structural changes were observed in the distal half (with respect to the substrate surface) of the hybrid bilayer comprised of a zwitterionic phospholipid in response to a +100mV potential with respect to 0mV. These arise presumably due to reorientation of the electric dipole present in the polar headgroup of the phospholipid and its resulting effect on the thickness of the phospholipid's hydrocarbon chain layer within the hybrid bilayer's profile structure.

View Article and Find Full Text PDF

This work reports the first example of a single-chain protein computationally designed to contain four α-helical segments and fold to form a four-helix bundle encapsulating a supramolecular abiological chromophore that possesses exceptional nonlinear optical properties. The 109-residue protein, designated SCRPZ-1, binds and disperses an insoluble hyperpolarizable chromophore, ruthenium(II) [5-(4'-ethynyl-(2,2';6',2″-terpyridinyl))-10,20-bis(phenyl)porphinato]zinc(II)-(2,2';6',2″-terpyridine)(2+) (RuPZn) in aqueous buffer solution at a 1:1 stoichiometry. A 1:1 binding stoichiometry of the holoprotein is supported by electronic absorption and circular dichroism spectra, as well as equilibrium analytical ultracentrifugation and size exclusion chromatography.

View Article and Find Full Text PDF

The voltage-sensor domain (VSD) is a modular four-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of X-ray crystal structures for a few voltage-gated potassium (Kv) channels and a voltage-gate sodium (Nav) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e.

View Article and Find Full Text PDF

We show that simply designed amphiphilic 4-helix bundle peptides can be utilized to vectorially orient a linearly extended donor-bridge-acceptor (D-br-A) electron transfer (ET) chromophore within its core. The bundle's interior is shown to provide a unique solvation environment for the D-br-A assembly not accessible in conventional solvents and thereby control the magnitudes of both light-induced ET and thermal charge recombination rate constants. The amphiphilicity of the bundle's exterior was employed to vectorially orient the peptide-chromophore complex at a liquid-gas interface, and its ends were tailored for subsequent covalent attachment to an inorganic surface, via a "directed assembly" approach.

View Article and Find Full Text PDF

One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1-S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e.

View Article and Find Full Text PDF

The de novo design of membrane proteins remains difficult despite recent advances in understanding the factors that drive membrane protein folding and association. We have designed a membrane protein PRIME (PoRphyrins In MEmbrane) that positions two non-natural iron diphenylporphyrins (Fe(III)DPP's) sufficiently close to provide a multicentered pathway for transmembrane electron transfer. Computational methods previously used for the design of multiporphyrin water-soluble helical proteins were extended to this membrane target.

View Article and Find Full Text PDF

"Push-pull" chromophores based on extended pi-electron systems have been designed to exhibit exceptionally large molecular hyperpolarizabilities. We have engineered an amphiphilic four-helix bundle peptide to vectorially incorporate such hyperpolarizable chromophores having a metalloporphyrin moiety, with high specificity into the interior core of the bundle. The amphiphilic exterior of the bundle facilitates the formation of densely packed monolayer ensembles of the vectorially oriented peptide-chromophore complexes at the liquid-gas interface.

View Article and Find Full Text PDF

The macroscopic nonlinear optical response of the "push-pull" chromophore RuPZn incorporated into a single monolayer of the amphiphilic 4-helix bundle peptide (AP0) covalently attached to a solid substrate at high in-plane density has been measured. The second-order susceptibility, chi(zzz), was found to be in the range of approximately 15 x 10(-9) esu, consistent with a coherent sum of the nonlinear contributions from the individual chromophores (beta) as previously measured in isotropic solution through hyper-Rayleigh scattering as well as estimated from theoretical calculations. The microscopic hyperpolarizability of the RuPZn chromophore is preserved upon incorporation into the peptide monolayer, suggesting that the chromophore-chromophore interactions in the densely packed ensemble do not substantially affect the first-order molecular hyperpolarizability.

View Article and Find Full Text PDF

Langmuir monolayers provide an important system for the investigation of the intramolecular structure and intermolecular ordering of organic and bio-organic macromolecular amphiphiles at an interface between polar and nonpolar media, e.g., the liquid-gas interface.

View Article and Find Full Text PDF

A nitrile-derived amino acid, Phe(CN), has been used as an internal spectroscopic probe to study the binding of an inhalational anesthetic to a model membrane protein. The infrared spectra from experiment showed a blue-shift of the nitrile vibrational frequency in the presence of the anesthetic halothane. To interpret the infrared results and explore the nature of the interaction between halothane and the model protein, all-atom molecular dynamics (MD) simulations have been used to probe the structural and dynamic properties of the protein in the presence and absence of one halothane molecule.

View Article and Find Full Text PDF

We demonstrate that cyano-phenylalanine (Phe(CN)) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-Phe(CN). The Trp to Phe(CN) mutation alters neither the alpha-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this Phe(CN) mutant hbAP-Phe(CN), based on fluorescence quenching, are consistent with those of the prototype, hbAP1.

View Article and Find Full Text PDF

We previously reported the synthesis and structural characterization of a model membrane protein comprised of an amphiphilic 4-helix bundle peptide with a hydrophobic domain based on a synthetic ion channel and a hydrophilic domain with designed cavities for binding the general anesthetic halothane. In this work, we synthesized an improved version of this halothane-binding amphiphilic peptide with only a single cavity and an otherwise identical control peptide with no such cavity, and applied x-ray reflectivity to monolayers of these peptides to probe the distribution of halothane along the length of the core of the 4-helix bundle as a function of the concentration of halothane. At the moderate concentrations achieved in this study, approximately three molecules of halothane were found to be localized within a broad symmetric unimodal distribution centered about the designed cavity.

View Article and Find Full Text PDF

An UV-visible spectrometer for measuring absorbance and dichroism of Langmuir monolayers under in situ conditions is described. The spectrometer utilizes a stand-alone multipass sensor, which is placed in a Langmuir trough and coupled with light source and spectrometer head via fiber optics. Implementation of the multipass scheme in the absorbance sensor makes it possible to obtain reliable quantitative spectroscopic data of the Langmuir monolayers with absorbance as low as 1 mOD.

View Article and Find Full Text PDF

We have developed a computational design strategy based on the alpha-helical coiled-coil to generate modular peptide motifs capable of assembling into metalloporphyrin arrays of varying lengths. The current study highlights the extension of a two-metalloporphyrin array to a four-metalloporphyrin array through the incorporation of a coiled-coil repeat unit. Molecular dynamics simulations demonstrate that the initial design evolves rapidly to a stable structure with a small rmsd compared to the original model.

View Article and Find Full Text PDF

Incorporation of extended conjugated chromophores into amphiphilic 4-helix bundle peptides has been shown experimentally to be an effective means to orient the chromphores vectorially in 2-D ensembles with high in-plane density. The designed microscopic hyperpolarizabilty of the chromophore is preserved in the macroscopic NLO response of the ensemble. We show via molecular dynamics simulation that the designed coiled-coil structure of the bundle controls the conformation and dynamics of the chromophore that are critical to optimizing its hyperpolarizability.

View Article and Find Full Text PDF

We describe the computational design of a single-chain four-helix bundle that noncovalently self-assembles with fully synthetic non-natural porphyrin cofactors. With this strategy, both the electronic structure of the cofactor as well as its protein environment may be varied to explore and modulate the functional and photophysical properties of the assembly. Solution characterization (NMR, UV-vis) of the protein showed that it bound with high specificity to the desired cofactors, suggesting that a uniquely structured protein and well-defined site had indeed been created.

View Article and Find Full Text PDF

The three-dimensional structure and dynamics of de novo designed, amphiphilic four-helix bundle peptides (or "maquettes"), capable of binding metallo-porphyrin cofactors at selected locations along the length of the core of the bundle, are investigated via molecular dynamics simulations. The rapid evolution of the initial design to stable three-dimensional structures in the absence (apo-form) and presence (holo-form) of bound cofactors is described for the maquettes at two different soft interfaces between polar and nonpolar media. This comparison of the apo- versus holo-forms allows the investigation of the effects of cofactor incorporation on the structure of the four-helix bundle.

View Article and Find Full Text PDF

Extended conjugated chromophores containing (porphinato)zinc components that exhibit large optical polarizabilities and hyperpolarizabiliites are incorporated into amphiphilic 4-helix bundle peptides via specific axial histidyl ligation of the metal. The bundle's designed amphiphilicity enables vectorial orientation of the chromophore/peptide complex in macroscopic monolayer ensembles. The 4-helix bundle structure is maintained upon incorporation of two different chromophores at stoichiometries of 1-2 per bundle.

View Article and Find Full Text PDF

Multipigment ensembles that feature (porphinato)metal components and appropriate ethyne- and oligoyne-based chromophore-to-chromophore connectivity can manifest large optical polarizabilities and hyperpolarizabilities by design. Their vectorial orientation and local environment are controlled upon incorporation into designed amphiphilic 4-helix bundle peptides via axial histidyl ligation without disturbing the peptide's helical secondary structure. The chromophore/peptide stoichiometry can be tuned by varying the peptide's oligomeric state.

View Article and Find Full Text PDF

hbAP0 is a model membrane protein designed to possess an anesthetic-binding cavity in its hydrophilic domain and a cation channel in its hydrophobic domain. Grazing incidence x-ray diffraction shows that hbAP0 forms four-helix bundles that are vectorially oriented within Langmuir monolayers at the air-water interface. Single monolayers of hbAP0 on alkylated solid substrates would provide an optimal system for detailed structural and dynamical studies of anesthetic-peptide interaction via x-ray and neutron scattering and polarized spectroscopic techniques.

View Article and Find Full Text PDF

Artificial peptides previously designed to possess alpha-helical bundle motifs have been either hydrophilic (i.e., soluble in polar media) or lipophilic (i.

View Article and Find Full Text PDF

A family of four-helix bundle peptides were designed to be amphiphilic, possessing distinct hydrophilic and hydrophobic domains along the length of the bundle's exterior. This facilitates their vectorial insertion across a soft interface between polar and nonpolar media. Their design also now provides for selective incorporation of electron donor and acceptor cofactors within each domain.

View Article and Find Full Text PDF