We previously reported that RGTA, a synthetic heparan sulfate mimetic, induces almost complete closure of craniotomy defects one month after surgery in adult rats. RGTA-treated wounds showed features suggesting unusual cell and matrix interactions reminiscent of developmental events. As healing success or failure is determined shortly after wounding, we examined early events in RGTA-treated wounds.
View Article and Find Full Text PDFA family of heparan-like polymers, RGTAs, was shown to promote repair of various tissues. Like heparin and heparan-sulfates, RGTAs potentiate in vitro the biological activities of heparin-binding growth factors (HBGFs) and protect them against proteolytic degradation. It was postulated that RGTAs stimulate bone healing by interacting with HBGFs released in the wound site and, subsequently, by promoting the proliferation of cells implicated in this process.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
March 2000
Hepatocyte growth factor/scatter factor (HGF/SF) is expressed by osteoblasts and has important effects on repair and bone remodeling. Because glucocorticoids regulate these two functions, we tested the effects of cortisol on the expression of HGF/SF and c-met, the protooncogene encoding the HGF/SF receptor, in cultures of osteoblast-enriched cells from 22-day fetal rat calvariae (Ob cells). Cortisol decreased HGF/SF mRNA levels and diminished the induction of HGF/SF transcripts by fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor BB (PDGF BB).
View Article and Find Full Text PDFHeparan-like polymers derived from dextran, named RGTA, were shown to stimulate bone repair in different bone defect models. Like heparin and heparan sulfates, RGTA potentiate in vitro the biological activities of heparin-binding growth factors (HBGFs), such as fibroblast growth factor (FGF), by stabilizing them against denaturations and by enhancing their binding with cellular receptors. RGTA were postulated to stimulate bone healing by interacting with HBGFs released in the wound site and, subsequently, by promoting the proliferation and/or differentiation of cells implicated in this process.
View Article and Find Full Text PDFRGTA, a new family of dextran-derived healing agents, promotes the repair of various tissues, including bone. In this study, we examined whether a dose of RGTA lower than in our previous studies could still modify the healing pattern in craniotomy defects. In 24 rats, two defects (3 mm diameter) were drilled on either side of the calvaria sagittal suture.
View Article and Find Full Text PDFHepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor with a major role in tissue morphogenesis and repair. It stimulates the proliferation of cells of the osteoblast and osteoclast lineages. Mitogenic factors playing a role in fracture repair may act by regulating HGF/SF expression or activity in bone-forming cells.
View Article and Find Full Text PDFGlucocorticoids inhibit the synthesis of insulin-like growth factor I (IGF-I) and regulate the expression of IGF-binding proteins (IGFBPs) in osteoblast cultures. IGFBP-related protein-1 (IGFBP-rP1), the product of the mac25 gene, binds IGF-I, IGF-II, and insulin, and we postulated that glucocorticoids regulate IGFBP-rP1 synthesis in osteoblasts. We tested the expression of mac25/IGFBP-rP1 in cultures of osteoblast-enriched cells from 22-day-old fetal rat calvariae (Ob cells).
View Article and Find Full Text PDFHeparin-binding growth factors (HBGFs) are known to stimulate bone repair when applied to bone lesions. Nevertheless, successful treatments are obtained with high protein doses since HBGFs are rapidly degraded in situ by multiple proteolytic activities associated with the inflammatory period of tissue healing. Like heparin or heparan sulfates, heparan-like molecules, named carboxymethyl-benzylamide-sulfonated dextrans (CMDBS), are known to potentiate fibroblast growth factor activities by stabilizing them against pH, thermal or proteolytic denaturations, and by enhancing their binding with cell surface receptors.
View Article and Find Full Text PDFSeveral Heparin Binding Growth Factors (HBGFs) are thought to play a key role in the natural processes of tissue regeneration or repair after being released by neighbouring, inflammatory or circulating cells as well as from extracellular matrix associated heparan sulfate proteoglycosaminoglycans. In order to better understand how the bioavailability of these HBGFs can take part in the regulation of the wound healing processes, we have studied the healing effect of various chemically substituted dextrans (CMDBS) selected for their affinity for HBGFs, alone and in association with HBGFs. The CMDBS was obtained by substitution of methylcarboxylic (CM), benzylamide (B) and benzylamine sulfonate (S) groups in proportion of 83%, 23% and 13% respectively for CMDBS K that we have further used (Mauzac et al.
View Article and Find Full Text PDFSeveral heparin-binding growth factors (HBGFs) are thought to play a key role in the natural processes of tissue homeostasis, regeneration or repair. The HBGFs are active upon release from neighbouring inflammatory or circulating cells, as well as upon release from heparan sulfate proteoglycosaminoglycans that are associated with the extracellular matrix (ECM). To better understand the physiological role of these HBGFs, we have focused our effort on studying a subset of HBGFs, namely FGF-1 and FGF-2 and their receptors.
View Article and Find Full Text PDFAnn Endocrinol (Paris)
January 1995
Several Heparin-Binding Growth Factors (HBGFs) are known to play an important role in bone repair. When osseous tissue is injured, an important increase of protease activities and a massive release of HBGFs occur. The local increase in HBGFs content at the wounded site, produced by a release of this factors from cells implicated in haemostasis and inflammatory reaction and from extracellular matrix associated heparan sulfate proteoglycans (HSPGs), seems to be a crucial step in bone healing.
View Article and Find Full Text PDF