Publications by authors named "Blankman J"

The nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown.

View Article and Find Full Text PDF

The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types.

View Article and Find Full Text PDF

Monoacylglycerol lipase (MGLL) is the primary degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). The first MGLL inhibitors have recently entered clinical development for the treatment of neurologic disorders. To support this clinical path, we report the pharmacological characterization of the highly potent and selective MGLL inhibitor ABD-1970 [1,1,1,3,3,3-hexafluoropropan-2-yl 4-(2-(8-oxa-3-azabicyclo[3.

View Article and Find Full Text PDF

The serine hydrolase monoacylglycerol lipase (MGLL) converts the endogenous cannabinoid receptor agonist 2-arachidonoylglycerol (2-AG) and other monoacylglycerols into fatty acids and glycerol. Genetic or pharmacological inactivation of MGLL leads to elevation in 2-AG in the central nervous system and corresponding reductions in arachidonic acid and eicosanoids, producing antinociceptive, anxiolytic, and antineuroinflammatory effects without inducing the full spectrum of psychoactive effects of direct cannabinoid receptor agonists. Here, we report the optimization of hexafluoroisopropyl carbamate-based irreversible inhibitors of MGLL, culminating in a highly potent, selective, and orally available, CNS-penetrant MGLL inhibitor, 28 (ABX-1431).

View Article and Find Full Text PDF

The endocannabinoid 2-arachidonoylglycerol (2-AG) is a retrograde lipid messenger that modulates synaptic function, neurophysiology, and behavior. 2-AG signaling is terminated by enzymatic hydrolysis-a reaction that is principally performed by monoacylglycerol lipase (MAGL). MAGL is broadly expressed throughout the nervous system, and the contributions of different brain cell types to the regulation of 2-AG activity in vivo remain poorly understood.

View Article and Find Full Text PDF

The serine hydrolase α/β-hydrolase domain 6 (ABHD6) hydrolyzes the most abundant endocannabinoid (eCB) in the brain, 2-arachidonoylglycerol (2-AG), and controls its availability at cannabinoid receptors. We show that ABHD6 inhibition decreases pentylenetetrazole (PTZ)-induced generalized tonic-clonic and myoclonic seizure incidence and severity. This effect is retained in Cnr1(-/-) or Cnr2(-/-) mice, but blocked by addition of a subconvulsive dose of picrotoxin, suggesting the involvement of GABAA receptors.

View Article and Find Full Text PDF

The serine hydrolase α/β hydrolase domain 6 (ABHD6) has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG) in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs) to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6's role in energy metabolism.

View Article and Find Full Text PDF

PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataracts) is a recently described autosomal-recessive neurodegenerative disease caused by mutations in the α-β-hydrolase domain-containing 12 gene (ABHD12). Only five homozygous ABHD12 mutations have been reported and the pathogenesis of PHARC remains unclear. We evaluated a woman who manifested short stature as well as the typical features of PHARC.

View Article and Find Full Text PDF

The endocannabinoid signaling system regulates diverse physiologic processes and has attracted considerable attention as a potential pharmaceutical target for treating diseases, such as pain, anxiety/depression, and metabolic disorders. The principal ligands of the endocannabinoid system are the lipid transmitters N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), which activate the two major cannabinoid receptors, CB1 and CB2. Anandamide and 2-AG signaling pathways in the nervous system are terminated by enzymatic hydrolysis mediated primarily by the serine hydrolases fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively.

View Article and Find Full Text PDF

Advances in human genetics are leading to the discovery of new disease-causing mutations at a remarkable rate. Many such mutations, however, occur in genes that encode for proteins of unknown function, which limits our molecular understanding of, and ability to devise treatments for, human disease. Here, we use untargeted metabolomics combined with a genetic mouse model to determine that the poorly characterized serine hydrolase α/β-hydrolase domain-containing (ABHD)12, mutations in which cause the human neurodegenerative disorder PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, and cataract), is a principal lysophosphatidylserine (LPS) lipase in the mammalian brain.

View Article and Find Full Text PDF

Phospholipase A(2)(PLA(2)) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)-mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model.

View Article and Find Full Text PDF

Endocannabinoid (eCB) signaling is tightly regulated by eCB biosynthetic and degradative enzymes. The eCB 2-arachidonoylglycerol (2-AG) is hydrolyzed primarily by monoacylglycerol lipase (MAGL). Here, we investigated whether eCB signaling, synaptic function, and learning behavior were altered in MAGL knock-out mice.

View Article and Find Full Text PDF

The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is hydrolysed primarily by monoacylglycerol lipase (MAGL). Here, we investigated whether eCB-mediated retrograde synaptic depression in cerebellar slices was altered in MAGL knockout (MAGL(-/-)) mice. Depolarization-induced suppression of excitation (DSE) and metabotropic glutamate receptor (mGluR1)-mediated synaptic depression are mediated by 2-AG-induced activation of CB(1) receptors.

View Article and Find Full Text PDF

Background And Purpose: Depolarization-induced suppression of inhibition (DSI) and excitation (DSE) are two forms of cannabinoid CB(1) receptor-mediated inhibition of synaptic transmission, whose durations are regulated by endocannabinoid (eCB) degradation. We have recently shown that in cultured hippocampal neurons monoacylglycerol lipase (MGL) controls the duration of DSE, while DSI duration is determined by both MGL and COX-2. This latter result suggests that DSE might be attenuated, and excitatory transmission enhanced, during inflammation and in other settings where COX-2 expression is up-regulated.

View Article and Find Full Text PDF

Background And Purpose: Inflammatory pain presents a problem of clinical relevance and often elicits allodynia, a condition in which non-noxious stimuli are perceived as painful. One potential target to treat inflammatory pain is the endogenous cannabinoid (endocannabinoid) system, which is comprised of CB1 and CB2 cannabinoid receptors and several endogenous ligands, including anandamide (AEA). Blockade of the catabolic enzyme fatty acid amide hydrolase (FAAH) elevates AEA levels and elicits antinociceptive effects, without the psychomimetic side effects associated with Δ(9) -tetrahydrocannabinol (THC).

View Article and Find Full Text PDF

The endogenous cannabinoid (endocannabinoid) anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH). Pharmacological blockade of FAAH has emerged as a potentially attractive strategy for augmenting endocannabinoid signaling and retaining the beneficial effects of cannabinoid receptor activation, while avoiding the undesirable side effects, such as weight gain and impairments in cognition and motor control, observed with direct cannabinoid receptor 1 agonists. Here, we report the detailed mechanistic and pharmacological characterization of N-pyridazin-3-yl-4-(3-{[5-(trifluoromethyl)pyridin-2-yl]oxy}benzylidene)piperidine-1-carboxamide (PF-04457845), a highly efficacious and selective FAAH inhibitor.

View Article and Find Full Text PDF

The enzyme fatty acid amide hydrolase (FAAH) catalyzes the in vivo degradation of the endocannabinoid anandamide, thus controlling its action at receptors. A novel FAAH inhibitor, AM3506, normalizes the elevated blood pressure and cardiac contractility of spontaneously hypertensive rats (SHR) without affecting these parameters in normotensive rats. These effects are due to blockade of FAAH and a corresponding rise in brain anandamide levels, resulting in CB₁ receptor-mediated decrease in sympathetic tone.

View Article and Find Full Text PDF

Serine hydrolases (SHs) are one of the largest and most diverse enzyme classes in mammals. They play fundamental roles in virtually all physiological processes and are targeted by drugs to treat diseases such as diabetes, obesity, and neurodegenerative disorders. Despite this, we lack biological understanding for most of the 110+ predicted mammalian metabolic SHs, in large part because of a dearth of assays to assess their biochemical activities and a lack of selective inhibitors to probe their function in living systems.

View Article and Find Full Text PDF

The signaling capacity of endogenous cannabinoids ("endocannabinoids") is tightly regulated by degradative enzymes. This Perspective highlights a research article in this issue (p. 996) in which the authors show that genetic disruption of monoacylglycerol lipase (MAGL), the principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), causes marked elevations in 2-AG levels that lead to desensitization of brain cannabinoid receptors.

View Article and Find Full Text PDF

Prolonged exposure to drugs of abuse, such as cannabinoids and opioids, leads to pharmacological tolerance and receptor desensitization in the nervous system. We found that a similar form of functional antagonism was produced by sustained inactivation of monoacylglycerol lipase (MAGL), the principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol. After repeated administration, the MAGL inhibitor JZL184 lost its analgesic activity and produced cross-tolerance to cannabinoid receptor (CB1) agonists in mice, effects that were phenocopied by genetic disruption of Mgll (encoding MAGL).

View Article and Find Full Text PDF
Article Synopsis
  • The endocannabinoid 2-arachidonoylglycerol (2-AG) plays a crucial role in regulating neurotransmission and neuroinflammation by activating cannabinoid receptors on neurons and microglia.
  • Enzymes, like monoacylglycerol lipase and the recently studied ABHD6, control the levels and effectiveness of 2-AG at these receptors, with ABHD6 specifically reducing the breakdown of 2-AG in microglial cells, enhancing its ability to promote cell migration.
  • Inhibiting ABHD6 leads to increased 2-AG accumulation in neurons, facilitating long-term depression through CB1 receptors, highlighting ABHD6 as an important regulator in end
View Article and Find Full Text PDF

The endocannabinoid 2-arachidonoylglycerol (2-AG) has been implicated as a key retrograde mediator in the nervous system based on pharmacological studies using inhibitors of the 2-AG biosynthetic enzymes diacyglycerol lipase alpha and beta (DAGL-alpha/beta). Here, we show by competitive activity-based protein profiling that the DAGL-alpha/beta inhibitors, tetrahydrolipstatin (THL) and RHC80267, block several brain serine hydrolases with potencies equal to or greater than their inhibitory activity against DAGL enzymes. Interestingly, a minimal overlap in target profiles was observed for THL and RHC80267, suggesting that pharmacological effects observed with both agents may be viewed as good initial evidence for DAGL-dependent events.

View Article and Find Full Text PDF

Delta(9)-tetrahydrocannabinol (THC), the psychoactive ingredient of marijuana, has useful medicinal properties but also undesirable side effects. The brain receptor for THC, CB(1), is also activated by the endogenous cannabinoids anandamide and 2-arachidonylglycerol (2-AG). Augmentation of endocannabinoid signaling by blockade of their metabolism may offer a more selective pharmacological approach compared with CB(1) agonists.

View Article and Find Full Text PDF

Endogenous ligands for cannabinoid receptors ("endocannabinoids") include the lipid transmitters anandamide and 2-arachidonoylglycerol (2-AG). Endocannabinoids modulate a diverse set of physiological processes and are tightly regulated by enzymatic biosynthesis and degradation. Termination of anandamide signaling by fatty acid amide hydrolase (FAAH) is well characterized, but less is known about the inactivation of 2-AG, which can be hydrolyzed by multiple enzymes in vitro, including FAAH and monoacylglycerol lipase (MAGL).

View Article and Find Full Text PDF