Background: The objective of this review is to evaluate the associations between short-term exposure to radiofrequency electromagnetic fields (RF-EMF) and cognitive performance in human experimental studies.
Methods: Online databases (PubMed, Embase, Scopus, Web of Science and EMF-Portal) were searched for studies that evaluated effects of exposure to RF-EMF on seven domains of cognitive performance in human experimental studies. The assessment of study quality was based on the Risk of Bias (RoB) tool developed by the Office of Health Assessment and Translation (OHAT).
This report summarizes effects of anthropogenic electric, magnetic, and electromagnetic fields in the frequency range from 0 to 100 MHz on flora and fauna, as presented at an international workshop held on 5-7 November in 2019 in Munich, Germany. Such fields may originate from overhead powerlines, earth or sea cables, and from wireless charging systems. Animals and plants react differentially to anthropogenic fields; the mechanisms underlying these responses are still researched actively.
View Article and Find Full Text PDFThis report summarizes the effects of anthropogenic radiofrequency electromagnetic fields with frequencies above 100 MHz on flora and fauna presented at an international workshop held on 5-7 November 2019 in Munich, Germany. Anthropogenic radiofrequency electromagnetic fields at these frequencies are commonplace; e.g.
View Article and Find Full Text PDFBackground: The World Health Organization (WHO) is currently assessing the potential health effects of exposure to radiofrequency electromagnetic fields (RF-EMFs) in the general and working population. Related to one such health effect, there is a concern that RF-EMFs may affect cognitive performance in humans. The systematic review (SR) aims to identify, summarize and synthesize the evidence base related to this question.
View Article and Find Full Text PDFThe morphological sensillum types on the antennae of male and female Cactoblastis cactorum were visualized by scanning electron microscopy. Electrophysiological recordings were performed for the first time on single olfactory sensilla of C. cactorum.
View Article and Find Full Text PDFThe sensilla trichodea of the silkmoth Antheraea polyphemus are innervated by three types of receptor neurons each responding specifically to one of three pheromone components. The sensillum lymph of these sensilla surrounding the sensory dendrites contains three different types of pheromone-binding proteins (PBPs) in high concentrations. The sensilla trichodea of the silkmoth Bombyx mori are supplied by two receptor neurons each tuned specifically to one of the two pheromone components bombykol and bombykal, but only one type of PBP has been found so far in these sensilla.
View Article and Find Full Text PDFNaturwissenschaften
November 2002
Pheromone binding proteins (PBPs) occur in high concentrations in the sensillum lymph surrounding the sensory dendrites of moth pheromone-sensitive sensilla. They were shown to transport the lipophilic odorants through the aqueous sensillum lymph to the receptor cells. The sensilla trichodea of the silkmoth Antheraea polyphemus are supplied with three types of receptor cells responding specifically to three pheromone components.
View Article and Find Full Text PDFElectrophysiological responses of olfactory receptor neurons in both male and female silkmoths (Bombyx mori) were investigated. In both sexes, the G-protein activator sodium fluoride and 1,2-dioctanoyl-sn-glycerol, a membrane-permeable analog of the protein kinase C activator diacylglycerol, elicited nerve impulse responses similar to those elicited by weak continuous stimulation with odorants. Therefore, G(q)-proteins and diacylglycerol-activated ion channels seem to be involved in the transduction process in both pheromone-sensitive neurons in males and general odorant-sensitive neurons in females.
View Article and Find Full Text PDF