In this manuscript, an oxidative carbon-carbon bond forming reaction to construct the framework of alkaloids such as scholarinine A is explored using a constrained substrate. Instead of the desired carbon-carbon bond formation between an indole C3 position and a malonate group, a competing carbon-nitrogen bond between the malonate and indole C3 position was observed to form. This work adds to the growing body of substrates for oxidative carbon-carbon bond formation and importantly, demonstrates that these reactions are challenging for some conformationally constrained substrates.
View Article and Find Full Text PDFProgress toward a convergent approach for the enantioselective synthesis of the alkaloid jervine is presented. The two requisite fragments were stereoselectively and efficiently fashioned from economical and readily available reagents. Key reactions include (a) a highly diastereoselective Ireland-Claisen rearrangement to establish the necessary relationship between the amine and methyl group on the tetrahydrofuran E-ring; (b) a diastereoselective selenoetherification reaction that enabled the assembly of the D/E oxaspiro[4.
View Article and Find Full Text PDFA sequential benzoylation and multihetero-Cope rearrangement of α-keto ester derived nitrones has been developed. The reaction furnishes a diverse array of complex α-imino ester derivatives. The products can be transformed into amino alcohols via LiAlH reduction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2017
The addition of terminal alkynes to racemic β-stereogenic α-keto esters was achieved in high levels of stereoselectivity, affording versatile tertiary propargylic alcohols containing two stereocenters. This environmentally benign enantioconvergent reaction proceeds with perfect atom economy, requires no solvent, and is catalyzed by a non-toxic zinc salt. The alkyne moiety can be leveraged in downstream transformations including hydrogenation to the corresponding saturated tertiary alcohol, which represents the product of a formal enantioconvergent aliphatic nucleophile addition.
View Article and Find Full Text PDFA catalyst system derived from commercially available Pd(dba) and PBu has been applied to the coupling of α-keto ester enolates and aryl bromides. The reaction provides access to an array of β-stereogenic α-keto esters. When the air-stable ligand precursor PBu·HBF is employed, the reaction can be carried out without use of a glovebox.
View Article and Find Full Text PDFAn organocatalytic three-component reductive coupling reaction between dimethyl phosphite, benzylidene pyruvates, and aldehydes is reported. A chiral triaryliminophosphorane catalyst promotes Pudovik addition, which is followed by phospha-Brook rearrangement to transiently generate enolates that are trapped stereoselectively by aldehydes. This reductive coupling provides vicinal polyfunctionalized stereocenters from readily available prochiral starting materials with excellent diastereoselectivity, enantioselectivity, and yield.
View Article and Find Full Text PDFA new method for the synthesis of 2-aminoimidazole products is described. The heterocyclic products are generated in good yields via Pd-catalyzed carboamination reactions of N-propargyl guanidines and aryl triflates. This methodology generates both a C-N and C-C bond during the annulation step and facilitates the rapid construction of 2-aminoimidazole products with different aryl groups.
View Article and Find Full Text PDFA new approach to the synthesis of substituted 5-membered cyclic guanidines is described. Palladium-catalyzed alkene carboamination reactions between acyclic N-allyl guanidines and aryl or alkenyl halides provide these products in good yield. This method allows access to a number of different cyclic guanidine derivatives in only two steps from readily available allylic amines.
View Article and Find Full Text PDF