Hematological cancers encompass a diverse group of malignancies affecting the blood, bone marrow, lymph nodes, and spleen. These disorders present unique challenges due to their complex etiology and varied clinical manifestations. Despite significant advancements in understanding and treating hematological malignancies, innovative therapeutic approaches are continually sought to enhance patient outcomes.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) stand as the leading cause of death worldwide, posing a significant global health challenge. Consequently, the development of innovative therapeutic strategies to enhance CVDs treatment is imperative. RNA-based therapies, encompassing non-coding RNAs, mRNA, aptamers, and CRISPR/Cas9 technology, have emerged as promising tools for addressing CVDs.
View Article and Find Full Text PDFNeuroblastoma is a pediatric tumor that originates during embryonic development and progresses into aggressive tumors, primarily affecting children under two years old. Many patients are diagnosed as high-risk and undergo chemotherapy, often leading to short- and long-term toxicities. Nanomedicine offers a promising solution to enhance drug efficacy and improve physical properties.
View Article and Find Full Text PDFRNA-based therapies, and siRNAs in particular, have attractive therapeutic potential for cancer treatment due to their ability to silence genes that are imperative for tumor progression. To be effective and solve issues related to their poor half-life and poor pharmacokinetic properties, siRNAs require adequate drug delivery systems that protect them from degradation and allow intracellular delivery. Among the various delivery vehicles available, lipid nanoparticles have emerged as the leading choice.
View Article and Find Full Text PDFMyocardial infarction is one of the major causes of morbidity and mortality worldwide. Current treatments can relieve the symptoms of myocardial ischemia but cannot repair the necrotic myocardial tissue. Novel therapeutic strategies based on cellular therapy, extracellular vesicles, non-coding RNAs and growth factors have been designed to restore cardiac function while inducing cardiomyocyte cycle re-entry, ensuring angiogenesis and cardioprotection, and preventing ventricular remodeling.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are nanosized particles with attractive therapeutic potential for cardiac repair. However, low retention and stability after systemic administration limit their clinical translation. As an alternative, the combination of EVs with biomaterial-based hydrogels (HGs) is being investigated to increase their exposure in the myocardium and achieve an optimal therapeutic effect.
View Article and Find Full Text PDFThe co-administration of glial cell line-derived neurotrophic factor (GDNF) and mesenchymal stem cells (MSCs) in hydrogels (HGs) has emerged as a powerful strategy to enhance the efficient integration of transplanted cells in Parkinson's disease (PD). This strategy could be improved by controlling the cellular microenvironment and biomolecule release and better mimicking the complex properties of the brain tissue. Here, we develop and characterize a drug delivery system for brain repair where MSCs and GDNF are included in a nanoparticle-modified supramolecular guest-host HA HG.
View Article and Find Full Text PDFExpert Opin Drug Deliv
November 2022
Introduction: Parkinson's disease is the second most common neurodegenerative disease. Currently, there are no curative therapies, with only symptomatic treatment available. One of the principal reasons for the lack of treatments is the problem of delivering drugs to the brain, mainly due to the blood-brain barrier.
View Article and Find Full Text PDFEmbryonal tumors of the nervous system are neoplasms predominantly affecting the pediatric population. Among the most common and aggressive ones are neuroblastoma (NB) and medulloblastoma (MB). NB is a sympathetic nervous system tumor, which is the most frequent extracranial solid pediatric cancer, usually detected in children under two.
View Article and Find Full Text PDFEdelfosine (ET) is a potent antitumor agent but causes severe side effects that have limited its use in clinical practice. For this reason, nanoencapsulation in lipid nanoparticles (LNs) is advantageous as it protects from ET side-effects. Interestingly, previous studies showed the efficacy of LNs containing ET in various types of tumor.
View Article and Find Full Text PDFSince the discovery of the beneficial therapeutical effects of extracellular vesicles (EVs), these agents have been attracting great interest as next-generation therapies. EVs are nanosized membrane bodies secreted by all types of cells that mediate cell-cell communication. Although the classification of different subpopulations of EVs can be complex, they are broadly divided into microvesicles and exosomes based on their biogenesis and in large and small EVs based on their size.
View Article and Find Full Text PDFTherapeutic perspectives of bone tumors such as osteosarcoma remain restricted due to the inefficacy of current treatments. We propose here the construction of a novel anticancer squalene-based nanomedicine with bone affinity and retention capacity. A squalenyl-hydroxybisphosphonate molecule was synthetized by chemical conjugation of a 1-hydroxyl-1,1-bisphosphonate moiety to the squalene chain.
View Article and Find Full Text PDFTreatment in children with high-risk neuroblastoma remains largely unsuccessful due to the development of metastases and drug resistance. The biological complexity of these tumors and their microenvironment represent one of the many challenges to face. Matrix glycoproteins such as vitronectin act as bridge elements between extracellular matrix and tumor cells and can promote tumor cell spreading.
View Article and Find Full Text PDFOral anticancer drugs have earned a seat at the table, as the need for homecare treatment in oncology has increased. Interest in this field is growing as a result of their proven efficacy, lower costs and positive patient uptake. However, the gastrointestinal barrier is still the main obstacle to surmount in chemotherapeutic oral delivery.
View Article and Find Full Text PDFDespite tremendous progress in cell-based therapies for heart repair, many challenges still exist. To enhance the therapeutic potential of cell therapy one approach is the combination of cells with biomaterial delivery vehicles. Here, we developed a biomimetic and biodegradable micro-platform based on polymeric microparticles (MPs) capable of maximizing the therapeutic potential of cardiac progenitor cells (CPCs) and explored its efficacy in a rat model of chronic myocardial infarction.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are constituted by a group of heterogeneous membrane vesicles secreted by most cell types that play a crucial role in cell-cell communication. In recent years, EVs have been postulated as a relevant novel therapeutic option for cardiovascular diseases, including myocardial infarction (MI), partially outperforming cell therapy. EVs may present several desirable features, such as no tumorigenicity, low immunogenic potential, high stability, and fine cardiac reparative efficacy.
View Article and Find Full Text PDFDespite the interesting chemopreventive, antioxidant and antiangiogenic effects of the natural bioflavonoid genistein (GEN), its low aqueous solubility and bioavailability make it necessary to administer it using a suitable drug carrier system. Nanometric porous metal-organic frameworks (nanoMOFs) are appealing systems for drug delivery. Particularly, mesoporous MIL-100(Fe) possesses a variety of interesting features related to its composition and structure, which make it an excellent candidate to be used as a drug nanocarrier (highly porous, biocompatible, can be synthesized as homogenous and stable nanoparticles (NPs), etc.
View Article and Find Full Text PDFHuman glial cell line-derived neurotrophic factor (hGDNF) is the most potent dopaminergic factor described so far, and it is therefore considered a promising drug for Parkinson's disease (PD) treatment. However, the production of therapeutic proteins with a high degree of purity and a specific glycosylation pattern is a major challenge that hinders its commercialization. Although a variety of systems can be used for protein production, only a small number of them are suitable to produce clinical-grade proteins.
View Article and Find Full Text PDFDrug Deliv Transl Res
April 2021
Glioma is a type of cancer with a very poor prognosis with a survival of around 15 months in the case of glioblastoma multiforme (GBM). In order to advance in personalized medicine, we developed polymeric nanoparticles (PNP) loaded with both SPION (superparamagnetic iron oxide nanoparticles) and doxorubicin (DOX). The former being used for its potential to accumulate the PNP in the tumor under a strong magnetic field and the later for its therapeutic potential.
View Article and Find Full Text PDFCationic compounds have been described to readily penetrate cell membranes. Assigning positive charge to nanosystems, e.g.
View Article and Find Full Text PDF