Entomopathogenic Xenorhabdus spp. bacteria, symbiont of the nematode Steinernema spp., shows potential for mitigating agricultural pests and diseases through bioactive compound production.
View Article and Find Full Text PDFVineyards, covering over seven million hectares worldwide, hold significant socio-cultural importance. Traditionally reliant on conventional practices and agrochemicals, this agroecosystem faces environmental challenges, including soil and water pollution. Sustainable viticulture, driven by eco-friendly practices and cost reduction, has gained prominence, underlining the importance of biological control agents such as entomopathogenic nematodes (EPNs).
View Article and Find Full Text PDFJ Invertebr Pathol
July 2022
The entomopathogenic nematodes (EPNs) are biological control agents that are widespread in crop soils. However, traditional agricultural management practices such as cultivation and agrochemical usage can alter the soil balance that enables their occurrence and activity. Alternative strategies like mulching are commonly employed to prevent weed growth, enhance below-ground biodiversity by improving soil, organic matter content, fertility, and moisture.
View Article and Find Full Text PDFThe European grapevine moth (EGVM) (Lepidoptera: Tortricidae) is a relevant pest in the Palearctic region vineyards and is present in the Americas. Their management using biological control agents and environmentally friendly biotechnical tools would reduce intensive pesticide use. The entomopathogenic nematodes (EPNs) in the families Steinernematidae and Heterorhabditidae are well-known virulent agents against arthropod pests thanks to symbiotic bacteria in the genera and (respectively) that produce natural products with insecticidal potential.
View Article and Find Full Text PDFThe meadow spittlebug (Hemiptera: Aphrophoridae) is the primary vector of (Proteobacteria: Xanthomonadaceae) in Europe, a pest-disease complex of economically relevant crops such as olives, almonds, and grapevine, managed mainly through the use of broad-spectrum pesticides. Providing environmentally sound alternatives to reduce the reliance on chemical control is a primary challenge in the control of and, hence, in the protection of crops against the expansion of its associated bacterial pathogen. Entomopathogenic nematodes (EPNs) are well-known biocontrol agents of soil-dwelling arthropods.
View Article and Find Full Text PDFEarthworms are ecological engineers that can contribute to the displacement of biological control agents such as the entomopathogenic nematodes (EPNs) and fungi (EPF). However, a previous study showed that the presence of cutaneous excreta (CEx) and feeding behavior of the earthworm species Eisenia fetida (Haplotaxida: Lumbricidae) compromise the biocontrol efficacy of certain EPN species by reducing, for example, their reproductive capability. Whether this phenomenon is a general pattern for the interaction of earthworms-entomopathogens is still unknown.
View Article and Find Full Text PDFEntomopathogenic nematodes (EPNs) are excellent biological control agents. Although traditionally EPN application targeted belowground insects, their aboveground use can be supported if combined with adjuvants. We hypothesized that EPN infective juveniles (IJs) could be combined with plant-based oils as adjuvants, without decreasing their efficacy against insect larvae under various scenarios.
View Article and Find Full Text PDFEntomopathogenic fungi (EPF) are distributed in natural and agricultural soils worldwide. To investigate EPF occurrence in different botanical habitats and soil-ecoregions, we surveyed 50 georeferenced localities in the spring of 2016 across the Algarve region (South Portugal). Additionally, we compared three EPF isolation methods: insect baiting in untreated or pre-dried-soil and soil dilution plating on a selective medium.
View Article and Find Full Text PDFEntomopathogenic nematodes (EPNs) are well-studied biocontrol agents of soil-dwelling arthropod pests. The insecticidal efficiency of EPNs is modulated by food web dynamics. EPNs can reproduce in freeze-killed insect larvae, even in competition with free-living bacterivorous nematodes (FLBNs) in the genus Oscheius.
View Article and Find Full Text PDFEntomopathogenic nematodes (EPNs) and fungi (EPF) are well known biological control agents (BCAs) against insect pests. Similarly, the nematophagous fungi (NF) are considered good BCA candidates for controlling plant parasitic nematodes. Because NF can employ EPNs as food and interact with EPF, we speculate that the simultaneous application of EPNs and EPF might result in higher insect mortality, whereas the triple species combination with NF will reduce the EPN and EPF activity by predation or inhibition.
View Article and Find Full Text PDFIn agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity.
View Article and Find Full Text PDFEntomopathogenic nematodes (EPNs) and their bacterial partners are well-studied insect pathogens, and their persistence in soils is one of the key parameters for successful use as biological control agents in agroecosystems. Free-living bacteriophagous nematodes (FLBNs) in the genus Oscheius, often found in soils, can interfere in EPN reproduction when exposed to live insect larvae. Both groups of nematodes can act as facultative scavengers as a survival strategy.
View Article and Find Full Text PDF