Much of the foundation for lifelong spermatogenesis is established prior to puberty, and disruptions during this developmental window negatively impact fertility long into adulthood. However, the factors that coordinate prepubertal germline development are incompletely understood. Here, we report that core-binding factor subunit-β (CBFβ) plays critical roles in prepubertal development and the onset of spermatogenesis.
View Article and Find Full Text PDFSpermatogonial stem cell transplantation (SSCT) is an experimental technique for transfer of germline between donor and recipient males that could be used as a tool for biomedical research, preservation of endangered species, and dissemination of desirable genetics in food animal populations. To fully realize these potentials, recipient males must be devoid of endogenous germline but possess normal testicular architecture and somatic cell function capable of supporting allogeneic donor stem cell engraftment and regeneration of spermatogenesis. Here we show that male mice, pigs, goats, and cattle harboring knockout alleles of the gene generated by CRISPR-Cas9 editing have testes that are germline ablated but otherwise structurally normal.
View Article and Find Full Text PDFGene editing technologies, such as CRISPR-Cas9, have important applications in mammalian embryos for generating novel animal models in biomedical research and lines of livestock with enhanced production traits. However, the lack of methods for efficient introduction of gene editing reagents into zygotes of various species and the need for surgical embryo transfer in mice have been technical barriers of widespread use. Here, we described methodologies that overcome these limitations for embryos of mice, cattle, and pigs.
View Article and Find Full Text PDFControlled maturation of ovarian follicles is necessary for fertility. Follicles are restrained at an immature stage until stimulated by FSH secreted by pituitary gonadotropes. FSH acts on granulosa cells within the immature follicle to inhibit apoptosis, promote proliferation, stimulate production of steroid and protein hormones, and induce ligand receptors and signaling intermediates.
View Article and Find Full Text PDF