Publications by authors named "Blanca Jimenez-Garcia"

Taphonomic works aim at discovering how paleontological and archaeofaunal assemblages were formed. They also aim at determining how hominin fossils were preserved or destroyed. Hominins and other mammal carnivores have been co-evolving, at least during the past two million years, and their potential interactions determined the evolution of human behavior.

View Article and Find Full Text PDF

Human carnivory is atypical among primates. Unlike chimpanzees and bonobos, who are known to hunt smaller monkeys and eat them immediately, human foragers often cooperate to kill large animals and transport them to a safe location to be shared. While it is known that meat became an important part of the hominin diet around 2.

View Article and Find Full Text PDF

Humans are unique in their diet, physiology and socio-reproductive behavior compared to other primates. They are also unique in the ubiquitous adaptation to all biomes and habitats. From an evolutionary perspective, these trends seem to have started about two million years ago, coinciding with the emergence of encephalization, the reduction of the dental apparatus, the adoption of a fully terrestrial lifestyle, resulting in the emergence of the modern anatomical bauplan, the focalization of certain activities in the landscape, the use of stone tools, and the exit from Africa.

View Article and Find Full Text PDF

In this paper, we apply Machine Learning (ML) algorithms to study the differences between Discoid and Centripetal Levallois methods. For this purpose, we have used experimentally knapped flint flakes, measuring several parameters that have been analyzed by seven ML algorithms. From these analyses, it has been possible to demonstrate the existence of statistically significant differences between Discoid products and Centripetal Levallois products, thus contributing with new data and a new method to this traditional debate.

View Article and Find Full Text PDF

Bone surface modifications are foundational to the correct identification of hominin butchery traces in the archaeological record. Until present, no analytical technique existed that could provide objectivity, high accuracy, and an estimate of probability in the identification of multiple structurally-similar and dissimilar marks. Here, we present a major methodological breakthrough that incorporates these three elements using Artificial Intelligence (AI) through computer vision techniques, based on convolutional neural networks.

View Article and Find Full Text PDF