Publications by authors named "Blanca Garcia-Gomez"

Article Synopsis
  • Bacillus thuringiensis (Bt) bacteria produce insecticidal proteins Cry and Vip3, which kill certain insect larvae by disrupting their gut cells through pore formation.
  • The Vip3Aa protoxin requires proteolytic activation to change its structure and enhance binding to the brush border membrane vesicles (BBMV) in insects, while the unactivated form shows little binding and no toxicity.
  • Research identified domain III of Vip3Aa as the main binding domain and highlighted critical amino acids (K385, K526, V529) that become exposed upon activation, which are essential for the protein's receptor binding and insecticidal effects.
View Article and Find Full Text PDF

GroEL is a chaperonin that helps other proteins fold correctly. However, alternative activities, such as acting as an insect toxin, have also been discovered. This work evaluates the chaperonin and insecticidal activity of different GroEL proteins from entomopathogenic nematodes on .

View Article and Find Full Text PDF

(Bt) produces different insecticidal proteins effective for pest control. Among them, Cry insecticidal proteins have been used in transgenic plants for the control of insect pests. However, evolution of resistance by insects endangers this technology.

View Article and Find Full Text PDF

The increase in antimicrobial resistance has raised questions about how to use these drugs safely, especially in veterinary medicine, animal nutrition, and agriculture. is an important human and animal pathogen that frequently contains plasmids carrying antibiotic resistance genes. Extra chromosomal elements are required for various functions or conditions in microorganisms.

View Article and Find Full Text PDF

Bacteria of the genera and are symbionts of entomopathogenic nematodes. Despite their close phylogenetic relationship, they show differences in their pathogenicity and virulence mechanisms in target insects. These differences were explored by the analysis of the pangenome, as it provides a framework for characterizing and defining the gene repertoire.

View Article and Find Full Text PDF

This systematic review and meta-analysis aim to provide scientific evidence regarding the effects of training on respiratory muscle training's impact with the PowerBreath. A systematic analysis based on the guides and a conducted research structured around the bases of Web of Science, Scopus, Medline/PubMed, SciELO y Cochrane Library Plus. Six articles published before January 2021 were included.

View Article and Find Full Text PDF

Cry proteins are pore-forming insecticidal toxins with specificity against different crop pests and insect vectors of human diseases. Previous work suggested that the insect host Hsp90 chaperone could be involved in Cry toxin action. Here, we show that the interaction of Cry toxins with insect Hsp90 constitutes a positive loop to enhance the performance of these toxins.

View Article and Find Full Text PDF

Bacillus thuringiensis Cry toxins are currently used for pest control in transgenic crops but evolution of resistance by the insect pests threatens the use of this technology. The Cry1AbMod toxin was engineered to lack the alpha helix-1 of the parental Cry1Ab toxin and was shown to counter resistance to Cry1Ab and Cry1Ac toxins in different insect species including the fall armyworm Spodoptera frugiperda. In addition, Cry1AbMod showed enhanced toxicity to Cry1Ab-susceptible S.

View Article and Find Full Text PDF

Bacillus thuringiensis Cry2Ab toxin has been used in combination with Cry1Ac for resistance management on the Bt-cotton that is widely planted worldwide. However, little is known regarding Cry2Ab mode of action. Particularly, there is a gap of knowledge on the identification of insect midgut proteins that bind Cry2Ab and mediate toxicity.

View Article and Find Full Text PDF

Insecticidal proteins from Bacillus thuringiensis (Bt) are used extensively in sprays and transgenic crops for pest control, but their efficacy is reduced when pests evolve resistance. Better understanding of the mode of action of Bt toxins and the mechanisms of insect resistance is needed to enhance the durability of these important alternatives to conventional insecticides. Mode of action models agree that binding of Bt toxins to midgut proteins such as cadherin is essential for toxicity, but some details remain unresolved, such as the role of toxin oligomers.

View Article and Find Full Text PDF

Bacillus thuringiensis Cry1AbMod toxins are engineered versions of Cry1Ab that lack the amino-terminal end, including domain I helix α-1 and part of helix α-2. This deletion improves oligomerization of these toxins in solution in the absence of cadherin receptor and counters resistance to Cry1A toxins in different lepidopteran insects, suggesting that oligomerization plays a major role in their toxicity. However, Cry1AbMod toxins are toxic to Escherichia coli cells, since the cry1A promoter that drives its expression in B.

View Article and Find Full Text PDF

Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity.

View Article and Find Full Text PDF

A novel peptide named Pg8 was purified from the venom of the South African scorpion Parabuthus granulatus and its primary structure was determined. It contains 63 amino acid residues tightly folded by 4 disulfide bridges. The gene coding for this peptide was cloned from a cDNA library.

View Article and Find Full Text PDF

Plant cell walls undergo dynamic changes in response to different environmental stress conditions. In response to water deficit, two related proline-rich glycoproteins, called p33 and p36, accumulate in the soluble fraction of the cell walls in Phaseolus vulgaris (Covarrubias et al. in Plant Physiol 107:1119-1128, 1995).

View Article and Find Full Text PDF

The venom of the scorpion Tityus costatus contains peptides toxic to humans but scarce information on their structure and function is available. Here, we report the separation of 50 different components by high performance liquid chromatography and the identification of approximately 90 distinct components by mass spectrometry analysis, with molecular weights varying from 413 to 45482 atomic mass units. Four peptides were fully sequenced: (i) a butantoxin-like peptide that blocks Shaker K+ channel; (ii) an insect toxin-like peptide; (iii) a scorpine-like peptide, and a short heptapeptide of unknown function.

View Article and Find Full Text PDF

Three homologous acidic peptides have been isolated from the venom of three different Parabuthus scorpion species, P. transvaalicus, P. villosus, and P.

View Article and Find Full Text PDF