Publications by authors named "Blanca Fernandez-Lopez"

Article Synopsis
  • The study investigates the role of vesicular monoamine transporter 2 (Vmat2) in brain chemistry and behavior using a zebrafish model.
  • A zebrafish strain without functional Vmat2 was created, resulting in abnormal behavior and reduced levels of key neurotransmitters like dopamine and serotonin, despite increased activity of their synthesizing enzymes.
  • The findings suggest that Vmat2 is crucial for maintaining proper monoamine levels and brain development, highlighting the potential of this mutant strain for further research on monoamine-related disorders.
View Article and Find Full Text PDF

We used immunohistochemical methods to quantify changes in the number of glycine-immunoreactive neurons of the dorsomedial, lateral and cerebrospinal fluid contacting cell populations of the spinal cord of larval sea lampreys after a complete spinal cord injury. The data presented here are quantifications of the number of glycine-immunoreactive neurons located in the rostral and caudal stumps of the spinal cord and the corresponding statistical analyses. These data show that, glycine immunoreactivity is lost in glycinergic neurons immediately after injury and that the number of glycine-immunoreactive neurons is recovered in the following two weeks.

View Article and Find Full Text PDF

Taurine is one of the most abundant free amino acids in the brain. It is well known that taurine protects the brain from further damage after a traumatic event. However, only a few studies have looked at the possible role of taurine in the regulation of axon regeneration after injury.

View Article and Find Full Text PDF

The poor regenerative capacity of descending neurons is one of the main causes of the lack of recovery after spinal cord injury (SCI). Thus, it is of crucial importance to find ways to promote axonal regeneration. In addition, the prevention of retrograde degeneration leading to the atrophy/death of descending neurons is an obvious prerequisite to activate axonal regeneration.

View Article and Find Full Text PDF

We employed an anti-transducin antibody (Gαt-S), in combination with other markers, to characterize the Gαt-S-immunoreactive (ir) system in the CNS of the sea lamprey, Petromyzon marinus. Gαt-S immunoreactivity was observed in some neuronal populations and numerous fibers distributed throughout the brain. Double Gαt-S- and opsin-ir neurons (putative photoreceptors) are distributed in the hypothalamus (postoptic commissure nucleus, dorsal and ventral hypothalamus) and caudal diencephalon, confirming results of García-Fernández et al.

View Article and Find Full Text PDF

In vertebrates, γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the central nervous system (CNS) acting through ionotropic (GABA) and metabotropic (GABA) receptors. The GABA receptor produces a slow inhibition since it activates second messenger systems through the binding and activation of guanine nucleotide-binding proteins [G-protein-coupled receptors (GPCRs)]. Lampreys are a key reference to understand molecular evolution in vertebrates.

View Article and Find Full Text PDF

Lampreys recover locomotion following a spinal cord injury (SCI). Glutamate is necessary to initiate and control locomotion and recent data suggest a crucial role for intraspinal neurons in functional recovery following SCI. We aimed to determine whether, in lampreys, axotomized spinal glutamatergic neurons, which lose glutamate immunoreactivity immediately after SCI, recover it later on and to study the long-term evolution and anatomical recovery of the spinal glutamatergic system after SCI.

View Article and Find Full Text PDF

Despite the importance of doublecortin (DCX) for the development of the nervous system, its expression in the retina of most vertebrates is still unknown. The key phylogenetic position of lampreys, together with their complex life cycle, with a long blind larval stage and an active predator adult stage, makes them an interesting model to study retinal development. Here, we studied the spatiotemporal pattern of expression of DCX in the retina of the sea lamprey.

View Article and Find Full Text PDF

Following a spinal injury, lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by the regeneration of descending axons from the brain and the production of new neurons in the spinal cord. Here, we aimed to analyse the changes in the dopaminergic system of the sea lamprey after a complete spinal transection by studying the changes in dopaminergic cell numbers and dopaminergic innervation in the spinal cord.

View Article and Find Full Text PDF

In contrast to mammals, the spinal cord of lampreys spontaneously recovers from a complete spinal cord injury (SCI). Understanding the differences between lampreys and mammals in their response to SCI could provide valuable information to propose new therapies. Unique properties of the astrocytes of lampreys probably contribute to the success of spinal cord regeneration.

View Article and Find Full Text PDF

After spinal cord injury (SCI) in mammals, the loss of serotonin coming from the brainstem reduces the excitability of motor neurons and leads to a compensatory overexpression of serotonin receptors. Despite the key role of the serotonin receptor 1a in the control of locomotion, little attention has been put in the study of this receptor after SCI. In contrast to mammals, lampreys recover locomotion after a complete SCI, so, studies in this specie could help to understand events that lead to recovery of function.

View Article and Find Full Text PDF

The amino acid L-aspartate (ASP) is one of the most abundant excitatory neurotransmitters in the mammalian brain, but its distribution in other vertebrates has not yet been well characterized. We investigated the distribution of ASP in the brainstem and rostral spinal cord of the adult sea lamprey by using ASP immunohistochemistry. Our results indicate that ASP is accumulated in specific neurons, but not in glia (tanycytes).

View Article and Find Full Text PDF

Glutamate is the main excitatory neurotransmitter involved in spinal cord circuits in vertebrates, but in most groups the distribution of glutamatergic spinal neurons is still unknown. Lampreys have been extensively used as a model to investigate the neuronal circuits underlying locomotion. Glutamatergic circuits have been characterized on the basis of the excitatory responses elicited in postsynaptic neurons.

View Article and Find Full Text PDF

Glutamate is the major excitatory neurotransmitter in vertebrates, and glutamatergic cells probably represent a majority of neurons in the brain. Physiological studies have demonstrated a wide presence of excitatory (glutamatergic) neurons in lampreys. The present in situ hybridization study with probes for the lamprey vesicular glutamate transporter (VGLUT) provides an anatomical basis for the general distribution and precise localization of glutamatergic neurons in the sea lamprey brainstem.

View Article and Find Full Text PDF