Publications by authors named "Blanca Chinchilla"

In the wake of the COVID-19 pandemic caused by SARS-CoV-2, questions emerged about the potential effects of Bacillus Calmette-Guérin (BCG) vaccine on the immune response to SARS-CoV-2 infection, including the neurodegenerative diseases it may contribute to. To explore this, an experimental study was carried out in BCG-stimulated and non-stimulated k18-hACE2 mice challenged with SARS-CoV-2. Viral loads in tissues determined by RT-qPCR, histopathology in brain and lungs, immunohistochemical study in brain (IHC) as well as mortality rates, clinical signs and plasma inflammatory and coagulation biomarkers were assessed.

View Article and Find Full Text PDF

Intrapancreatic accessory spleen (IPAS) is one of the most frequent congenital splenic anomalies in humans; however, studies in veterinary medicine are scarce. This study aimed to describe the macroscopic, histopathological and immunohistochemical features of 11 suspected cases of IPAS in wild boar piglets of 3-4 months old. Seven of the 11 animals were immunised with a low virulence isolate of African swine fever virus (ASFV) and subsequently challenged with a highly virulent ASFV isolate (LVI-HVI group).

View Article and Find Full Text PDF

Animal victims of human cruelty are receiving increasing attention from the press and society. Veterinary pathologists and civic authorities have a duty not only to elucidate the cause, method and manner of death but also to address the motivation behind a case. Poultry are commonly used as offering to gods in Santería rituals (ebós).

View Article and Find Full Text PDF

is one of the major threats to world aquaculture, causing fish furunculosis and high mortality rates in cultured fish, particularly salmonids. Although spp. is a thoroughly studied pathogen, little is known regarding aeromoniasis in sturgeons.

View Article and Find Full Text PDF

Ovine brucellosis is an infectious disease that causes alterations in the reproductive tract in ram and abortion in ewes. Their negative economic impact in ovine production warrants a thorough understanding the interactions between B. ovis and the host.

View Article and Find Full Text PDF

Flavobacterium psychrophilum affects many cultured fish species and is considered one of the most important bacterial pathogens causing substantial economic losses in salmonid aquaculture worldwide. Here, F. psychrophilum was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nested PCR as the aetiological agent causing mortality in diseased juvenile Siberian sturgeons (Acipenser baerii) reared on a freshwater fish farm.

View Article and Find Full Text PDF

The Bruch's membrane (BrM) is a five-layered extracellular matrix (ECM) that supports the retinal pigment epithelium (RPE). Normal age-related changes in the BrM may lead to RPE cell damage and ultimately to the onset and progression of age-related macular degeneration (AMD), which is the most common cause of visual loss among the elderly. A role for the complement system in AMD pathology has been established, but the disease mechanisms are poorly understood, which hampers the design of efficient therapies to treat millions of patients.

View Article and Find Full Text PDF

Despite numerous unsuccessful clinical trials for anti-complement drugs to treat age-related macular degeneration (AMD), the complement system has not been fully explored as a target to stop drusen growth in patients with dry AMD. We propose that the resilient autoactivation of C3 by hydrolysis of its internal thioester (tick-over), which cannot be prevented by existing drugs, plays a critical role in the formation of drusenoid deposits underneath the retinal pigment epithelium (RPE). We have combined gene editing tools with stem cell technology to generate cell-based models that allow the role of the tick-over in sub-RPE deposit formation to be studied.

View Article and Find Full Text PDF

Genome editing with the use of CRISPR/Cas9 ribonucleoprotein complexes of induced pluripotent stem cells can be used to model many diseases. The combination of stem cells and gene editing technologies is a valuable tool to study ocular disorders, as many have been identified to be caused by specific genetic mutations. This protocol provides experimentally derived guidelines for genome editing of human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 ribonucleoprotein complexes to generate iPSCs harboring single nucleotide variants from ocular disorders.

View Article and Find Full Text PDF

Eye disorders affect millions of people worldwide, but the limited availability of human tissues hinders their study. Mouse models are powerful tools to understand the pathophysiology of ocular diseases because of their similarities with human anatomy and physiology. Alterations in the retinal pigment epithelium (RPE), including changes in morphology and function, are common features shared by many ocular disorders.

View Article and Find Full Text PDF

Viral haemorrhagic septicaemia virus (VHSV) is one of the worst viral threats to fish farming. Non-virion (NV) gene-deleted VHSV (dNV-VHSV) has been postulated as an attenuated virus, because the absence of the gene leads to lower induced pathogenicity. However, little is known about the immune responses driven by dNV-VHSV and the wild-type (wt)-VHSV in the context of infection.

View Article and Find Full Text PDF

Non-virion (NV) protein is essential for an efficient replication increasing the pathogenicity of the Salmonid novirhabdovirus (formerly IHNV), Piscine novirhabdovirus (formerly VHSV), and Hirame novirhabdovirus (HIRV). The interferon system, apoptosis, and other immune-related genes are modulated by NV to finally induce a deficient antiviral state in the cell. However, little is known about the VHSV NV regions involved in function and location.

View Article and Find Full Text PDF

The non-virion (NV) protein of viral haemorrhagic septicaemia virus (VHSV), an economically important fish novirhabdovirus, has been implicated in the interference of some host innate mechanisms (i.e. apoptosis) in vitro.

View Article and Find Full Text PDF

Spring viremia carp virus (SVCV) is a rhabdovirus seasonally affecting warm-water cyprinid fish farming causing high impacts in worldwide economy. Because of the lack of effective preventive treatments, the identification of multipath genes involved in SVCV infection might be an alternative to explore the possibilities of using drugs for seasonal prevention of this fish disease. Because the zebrafish (Danio rerio) is a cyprinid susceptible to SVCV and their genetics and genome sequence are well advanced, it has been chosen as a model for SVCV infections.

View Article and Find Full Text PDF

A new high throughput centrifugation-free method to estimate viral neutralizing antibody levels in low volumes and large numbers of plasma blood samples is described. Cell monolayers were, (i) plated on poly-d-Lys coated 96-wells, (ii) infected with viruses previously incubated with fish plasma containing antibodies, (iii) fixed with formaldehyde to increase cell recovery and avoid centrifugation steps, (iv) permeabilized with Saponin, (v) immunostained in the presence of Saponin by using a monoclonal antibody (MAb) to viral protein, (vi) digested with trypsin to detach cells from the monolayer, in the absence of Saponin to reduce damage of intracellular MAb-antigen complexes, and (vii) gated by flow cytometry using automatic 96-well batch analysis. The method was applied to the determination of plasma neutralizing antibodies from zebrafish (Danio rerio) surviving infections with viral hemorrhagic septicemia virus (VHSV) (an important rhabdovirus of salmonids).

View Article and Find Full Text PDF

We studied humoral long-term adaptive viral neutralization responses in zebrafish (Danio rerio), an increasingly useful vertebrate model for viral diseases actually limited by the absence of standardized anti-zebrafish immunoglobulin M (IgM) antibodies. We established an alternative method, similar to those used in other fish, to achieve a first estimation of zebrafish anti-viral antibody-like responses. We used the viral hemorrhagic septicemia virus (VHSV) model because, although protection after this non-natural infection was demonstrated in cold-acclimatized zebrafish, little is known about their induced anti-VHSV antibody-like responses.

View Article and Find Full Text PDF