Publications by authors named "Blake W Erickson"

Atomic force microscope (AFM) based single molecule force spectroscopy (SMFS) is a valuable tool in biophysics to investigate the ligand-receptor interactions, cell adhesion and cell mechanics. However, the force spectroscopy data analysis needs to be done carefully to extract the required quantitative parameters correctly. Especially the large number of molecules, commonly involved in complex networks formation; leads to very complicated force spectroscopy curves.

View Article and Find Full Text PDF

The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope.

View Article and Find Full Text PDF

High-speed atomic force microscopy has proven to be a valuable tool for the study of biomolecular systems at the nanoscale. Expanding its application to larger biological specimens such as membranes or cells has, however, proven difficult, often requiring fundamental changes in the AFM instrument. Here we show a way to utilize conventional AFM instrumentation with minor alterations to perform high-speed AFM imaging with a large scan range.

View Article and Find Full Text PDF

The interaction of organic molecules with the surface of calcite plays a central role in many geochemical, petrochemical, and industrial processes and in biomineralization. Adsorbed organics, typically fatty acids, can interfere with the evolution of calcite when immersed in aqueous solutions. Here we use atomic force microscopy in liquid to explore in real-time the evolution of the (1014) surface of calcite covered with various densities of stearic acid and exposed to different saline solutions.

View Article and Find Full Text PDF

We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance.

View Article and Find Full Text PDF

Modern high-speed atomic force microscopes generate significant quantities of data in a short amount of time. Each image in the sequence has to be processed quickly and accurately in order to obtain a true representation of the sample and its changes over time. This paper presents an automated, adaptive algorithm for the required processing of AFM images.

View Article and Find Full Text PDF