Publications by authors named "Blake S Moses"

Purpose: It has become increasingly clear that new multiagent combination regimens are required to improve survival rates in acute myeloid leukemia (AML). We recently reported that ART631, a first-in-class 2-carbon-linked artemisinin-derived dimer (2C-ART), was not only efficacious as a component of a novel three-drug combination regimen to treat AML, but, like other synthetic artemisinin derivatives, demonstrated low clinical toxicity. However, we ultimately found ART631 to have suboptimal solubility and stability properties, thus limiting its potential for clinical development.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) remains a devastating disease, with low cure rates despite intensive standard chemotherapy regimens. In the past decade, targeted antileukemic drugs have emerged from research efforts. Nevertheless, targeted therapies are often effective for only a subset of patients whose leukemias harbor a distinct mutational or gene expression profile and provide only transient antileukemic responses as monotherapies.

View Article and Find Full Text PDF

Artemisinins are active against human leukemia cell lines and have low clinical toxicity in worldwide use as antimalarials. Because multiagent combination regimens are necessary to cure fully evolved leukemias, we sought to leverage our previous finding that artemisinin analogs synergize with kinase inhibitors, including sorafenib (SOR), by identifying additional synergistic antileukemic drugs with low toxicity. Screening of a targeted antineoplastic drug library revealed that B-cell lymphoma 2 (BCL2) inhibitors synergize with artemisinins, and validation assays confirmed that the selective BCL2 inhibitor, venetoclax (VEN), synergized with artemisinin analogs to inhibit growth and induce apoptotic cell death of multiple acute leukemia cell lines in vitro.

View Article and Find Full Text PDF

Complex karyotype acute myeloid leukemia (CK-AML) has a dismal outcome with current treatments, underscoring the need for new therapies. Here, we report synergistic anti-leukemic activity of the BCL-2 inhibitor venetoclax (Ven) and the asparaginase formulation Pegylated Crisantaspase (PegC) in CK-AML in vitro and in vivo. Ven-PegC combination inhibited growth of multiple AML cell lines and patient-derived primary CK-AML cells in vitro.

View Article and Find Full Text PDF

Unlabelled: Acute lymphoblastic leukemia (ALL) has many features in common with normal B-cell progenitors, including their ability to respond to diverse signals from the bone marrow microenvironment (BMM) resulting in regulation of cell-cycle progression and survival. Bone marrow-derived cues influence many elements of both steady state hematopoiesis and hematopoietic tumor cell phenotypes through modulation of gene expression. miRNAs are one regulatory class of small noncoding RNAs that have been shown to be increasingly important in diverse settings of malignancy.

View Article and Find Full Text PDF

The bone marrow niche has a significant impact on acute lymphoblastic leukemia (ALL) cell phenotype. Of clinical relevance is the frequency with which quiescent leukemic cells, in this niche, survive treatment and contribute to relapse. This study suggests that marrow microenvironment regulation of BCL6 in ALL is one factor that may be involved in the transition between proliferative and quiescent states of ALL cells.

View Article and Find Full Text PDF

It is well established that the bone marrow microenvironment provides a unique site of sanctuary for hematopoietic diseases that both initiate and progress in this site. The model presented in the current report utilizes human primary bone marrow stromal cells and osteoblasts as two representative cell types from the marrow niche that influence tumor cell phenotype. The in vitro co-culture conditions described for human leukemic cells with these primary niche components support the generation of a chemoresistant subpopulation of tumor cells that can be efficiently recovered from culture for analysis by diverse techniques.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) initiates and progresses in the bone marrow, and as such, the marrow microenvironment is a critical regulatory component in development of this cancer. However, ALL studies were conducted mainly on flat plastic substrates, which do not recapitulate the characteristics of marrow microenvironments. To study ALL in a model of in vivo relevance, we have engineered a 3-D microfluidic cell culture platform.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) treatment regimens have dramatically improved the survival of ALL patients. However, chemoresistant minimal residual disease that persists following cessation of therapy contributes to aggressive relapse. The bone marrow microenvironment (BMM) is an established "site of sanctuary" for ALL, as well as myeloid-lineage hematopoietic disease, with signals in this unique anatomic location contributing to drug resistance.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionief1tl30jk7f4o9p7l5i5iifa00smlam): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once