We demonstrate optical pump-THz probe (OPTP) spectroscopy with a variable external magnetic field (0-9 T), in which the time-dependent THz signal is measured by echelon-based single-shot detection at a repetition rate of 1 kHz. The method reduces data acquisition times by more than an order of magnitude compared to conventional electro-optic sampling using a scanning delay stage. The approach illustrates the wide applicability of the single-shot measurement approach to non-equilibrium systems that are studied through OPTP spectroscopy, especially in cases where parameters such as magnetic field strength (B) or other experimental parameters are varied.
View Article and Find Full Text PDFTo realize the full promise of terahertz polaritonics (waveguide-based terahertz field generation, interaction, and readout) as a viable spectroscopy platform, much stronger terahertz fields are needed to enable nonlinear and even robust linear terahertz measurements. We use a novel geometric approach in which the optical pump is totally internally reflected to increase the distance over which optical rectification occurs. Velocity matching is achieved by tuning the angle of internal reflection.
View Article and Find Full Text PDF