Background: GABAergic synaptic transmission is known to play a critical role in the assembly of neuronal circuits during development and is responsible for maintaining the balance between excitatory and inhibitory signaling in the brain during maturation into adulthood. Importantly, defects in GABAergic neuronal function and signaling have been linked to a number of neurological diseases, including autism spectrum disorders, schizophrenia, and epilepsy. With patient-specific induced pluripotent stem cell (iPSC)-based models of neurological disease, it is now possible to investigate the disease mechanisms that underlie deficits in GABAergic function in affected human neurons.
View Article and Find Full Text PDF