Publications by authors named "Blake G Lindner"

Advancements within fecal source tracking (FST) studies are complicated by a lack of knowledge regarding the genetic content and distribution of fecally shed microbial populations. To address this gap, we performed a systematic literature review and curated a large collection of genomes (n = 26,018) representing fecally shed prokaryotic species across broad and narrow source categories commonly implicated in FST studies of recreational waters (i.e.

View Article and Find Full Text PDF

Despite increasing efforts across various disciplines, the fate, transport, and impact of synthetic plastics on the environment and public health remain poorly understood. To better elucidate the microbial ecology of plastic waste and its potential for biotransformation, we conducted a large-scale analysis of all publicly available meta-omic studies investigating plastics (n = 27) in the environment. Notably, we observed low prevalence of known plastic degraders throughout most environments, except for substantial enrichment in riverine systems.

View Article and Find Full Text PDF

In recent decades, human food consumption has led to an increased demand for animal-based foods, particularly chicken meat production. The state of Georgia, USA is one of the top broiler chicken producers in the United States, where animals are raised in Concentrated Animal Feeding Operations (CAFOs). Without proper management, CAFOs could negatively impact the environment and become a public health risk as a source of water and air pollution and/or by spreading antimicrobial resistance genes.

View Article and Find Full Text PDF

Bacterial strains and clonal complexes are two cornerstone concepts for microbiology that remain loosely defined, which confuses communication and research. Here we identify a natural gap in genome sequence comparisons among isolate genomes of all well-sequenced species that has gone unnoticed so far and could be used to more accurately and precisely define these and related concepts compared to current methods. These findings advance the molecular toolbox for accurately delineating and following the important units of diversity within prokaryotic species and thus should greatly facilitate future epidemiological and micro-diversity studies across clinical and environmental settings.

View Article and Find Full Text PDF

Metagenomics, i.e., shotgun sequencing of the total microbial community DNA from a sample, has become a mature technique but its application to pathogen detection in clinical, environmental, and food samples is far from common or standardized.

View Article and Find Full Text PDF

Multidrug-resistant organism (MDRO) colonization is a fundamental challenge in antimicrobial resistance. Limited studies have shown that fecal microbiota transplantation (FMT) can reduce MDRO colonization, but its mechanisms are poorly understood. We conducted a randomized, controlled trial of FMT for MDRO decolonization in renal transplant recipients called PREMIX (NCT02922816).

View Article and Find Full Text PDF

Wastewater-based epidemiology during the COVID-19 pandemic has proven useful for public health decision-making but is often hampered by sampling methodology constraints, particularly at the building- or neighborhood-level. Time-weighted composite samples are commonly used; however, autosamplers are expensive and can be affected by intermittent flows in sub-sewershed contexts. In this study, we compared time-weighted composite, grab, and passive sampling via Moore swabs, at four locations across a college campus to understand the utility of passive sampling.

View Article and Find Full Text PDF

Little is known about the genomic diversity of the microbial communities associated with raw municipal wastewater (sewage), including whether microbial populations specific to sewage exist and how such populations could be used to improve source attribution and apportioning in contaminated waters. Herein, we used the influent of three wastewater treatment plants in Atlanta, Georgia (USA) to perturb laboratory freshwater mesocosms, simulating sewage contamination events, and followed these mesocosms with shotgun metagenomics over a 7-day observational period. We describe 15 abundant non-redundant bacterial metagenome-assembled genomes (MAGs) ubiquitous within all sewage inocula yet absent from the unperturbed freshwater control at our analytical limit of detection.

View Article and Find Full Text PDF