The phosphate-starvation response transcription-factor protein family is essential to plant response to low-levels of phosphate. Proteins in this transcription factor (TF) family act by altering various gene expression levels, such as increasing levels of the acid phosphatase proteins which catalyze the conversion of inorganic phosphates to bio-available compounds. There are few structural characterizations of proteins in this TF family, none of which address the potent TF activation domains.
View Article and Find Full Text PDFThe tropomyosin 1 isoform I/C C-terminal domain (Tm1-LC) fibril structure is studied jointly with cryogenic electron microscopy (cryo-EM) and solid state nuclear magnetic resonance (NMR). This study demonstrates the complementary nature of these two structural biology techniques. Chemical shift assignments from solid state NMR are used to determine the secondary structure at the level of individual amino acids, which is faithfully seen in cryo-EM reconstructions.
View Article and Find Full Text PDFThe phosphate-starvation response transcription-factor protein family is essential to plant response to low-levels of phosphate. Proteins in this transcription factor (TF) family act by altering various gene expression levels, such as increasing levels of the acid phosphatase proteins which catalyze the conversion of inorganic phosphates to bio-available compounds. There are few structural characterizations of proteins in this TF family, none of which address the potent TF activation domains.
View Article and Find Full Text PDFThe Tropomyosin 1 isoform I/C C-terminal domain (Tm1-LC) fibril structure is studied jointly with cryogenic electron microscopy (cryo-EM) and solid state nuclear magnetic resonance (NMR). This study demonstrates the complementary nature of these two structural biology techniques. Chemical shift assignments from solid state NMR are used to determine the secondary structure at the level of individual amino acids, which is faithfully seen in cryo-EM reconstructions.
View Article and Find Full Text PDFThe biomolecular condensation of proteins with low complexity sequences plays a functional role in RNA metabolism and a pathogenic role in neurodegenerative diseases. The formation of dynamic liquid droplets brings biomolecules together to achieve complex cellular functions. The rigidification of liquid droplets into β-strand-rich hydrogel structures composed of protein fibrils is thought to be purely pathological in nature.
View Article and Find Full Text PDF