The contractile ring must anchor to the plasma membrane and cell wall to transmit its tension. F-BAR domain containing proteins including Imp2p and Cdc15p in fission yeast are likely candidate anchoring proteins based on their mutant phenotypes. Cdc15p is a node component, links the actin bundle to the plasma membrane, recruits Bgs1p to the division plane, prevents contractile ring sliding, and contributes to the stiffness of the contractile ring.
View Article and Find Full Text PDFFilamentous fungi grow by adding cell wall and membrane exclusively at the apex of tubular structures called hyphae. Growth was previously believed to occur only through exocytosis at the Spitzenkörper, an organised body of secretory macro- and microvesicles found only in growing hyphae. More recent work has indicated that an area deemed the sub-apical collar is enriched for endocytosis and is also required for hyphal growth.
View Article and Find Full Text PDFWe use a 785 nm shifted excitation Raman difference (SERDS) technique to measure the Raman spectra of the conidia of 10 mold species of especial toxicological, medical, and industrial importance, including Stachybotrys chartarum, Penicillium chrysogenum, Aspergillus fumigatus, Aspergillus flavus, Aspergillus oryzae, Aspergillus niger, and others. We find that both the pure Raman and fluorescence signals support the hypothesis that for an excitation wavelength of 785 nm the Raman signal originates from the melanin pigments bound within the cell wall of the conidium. In addition, the major features of the pure Raman spectra group into profiles that we hypothesize may be due to differences in the complex melanin biosynthesis pathways.
View Article and Find Full Text PDFFungal Genet Biol
August 2020
During growth, filamentous fungi produce polarized cells called hyphae. It is generally presumed that polarization of hyphae is dependent upon secretion through the Spitzenkörper, as well as a mechanism called apical recycling, which maintains a balance between the tightly coupled processes of endocytosis and exocytosis. Endocytosis predominates in an annular domain called the sub-apical endocytic collar, which is located in the region of plasma membrane 1-5 μm distal to the Spitzenkörper.
View Article and Find Full Text PDFSuccessful approaches to identification and/or biological characterization of fungal specimens through Raman spectroscopy may require the determination of the molecular origin of the Raman response as well as its separation from the background fluorescence. The presence of fluorescence can interfere with Raman detection and is virtually impossible to avoid. Fluorescence leads to a multiplicity of problems: one is noise, while another is "fake" spectral structure that can easily be confused for spontaneous Raman peaks.
View Article and Find Full Text PDFCoherent Anti-Stokes Raman Spectroscopy (CARS) is performed on single spores (conidia) of the fungus Aspergillus nidulans in order to establish a baseline measurement for fungal spores. Chemical maps of single spores are generated and spectral differentiation between the cell wall and the cytoplasm is achieved. Principal Component Analysis of the measured spectra is then completed as a means to quantify spore heterogeneity.
View Article and Find Full Text PDF