Graph generative models have recently emerged as an interesting approach to construct molecular structures atom-by-atom or fragment-by-fragment. In this study, we adopt the fragment-based strategy and decompose each input molecule into a set of small chemical fragments. In drug discovery, a few drug molecules are designed by replacing certain chemical substituents with their bioisosteres or alternative chemical moieties.
View Article and Find Full Text PDFVoxel-based 3D convolutional neural networks (CNNs) have been applied to predict protein-ligand binding affinity. However, the memory usage and computation cost of these voxel-based approaches increase cubically with respect to spatial resolution and sometimes make volumetric CNNs intractable at higher resolutions. Therefore, it is necessary to develop memory-efficient alternatives that can accelerate the convolutional operation on 3D volumetric representations of the protein-ligand interaction.
View Article and Find Full Text PDF