Publications by authors named "Blake A Hammann"

It has recently been observed that the temperature()-dependence of KIEs in H-tunneling reactions, characterized by isotopic activation energy difference (Δ = - ), is correlated to the rigidity of the tunneling ready states (TRSs) in enzymes. A more rigid system with narrowly distributed H-donor-acceptor distances (DADs) at the TRSs gives rise to a weaker -dependence of KIEs (i.e.

View Article and Find Full Text PDF

Solid-state (71)Ga NMR was used to investigate the structures of several heterometallic Group 13 hydroxo-aquo clusters, [Ga13-xInx (μ3-OH)6(μ2-OH)18(H2O)24](NO3)15 which are envisioned for thin film transistors. The characterization of these clusters in the solid state provides additional information in understanding the synthesis, structure and speciation of these precursors for high-quality, ultrasmooth thin films. Yet important structural information regarding these clusters - including the exact composition, isomeric structure, and coordination environments - were unknown prior to this precise NMR spectroscopy study.

View Article and Find Full Text PDF

This Perspective article highlights some of the traditional and non-traditional analytical tools that are presently used to characterize aqueous inorganic nanoscale clusters and polyoxometalate ions. The techniques discussed in this article include nuclear magnetic resonance spectroscopy (NMR), small angle X-ray scattering (SAXS), dynamic and phase analysis light scattering (DLS and PALS), Raman spectroscopy, and quantum mechanical computations (QMC). For each method we briefly describe how it functions and illustrate how these techniques are used to study cluster species in the solid state and in solution through several representative case studies.

View Article and Find Full Text PDF

The observed 1° isotope effect on 2° KIEs in H-transfer reactions has recently been explained on the basis of a H-tunneling mechanism that uses the concept that the tunneling of a heavier isotope requires a shorter donor-acceptor distance (DAD) than that of a lighter isotope. The shorter DAD in D-tunneling, as compared to H-tunneling, could bring about significant spatial crowding effect that stiffens the 2° H/D vibrations, thus decreasing the 2° KIE. This leads to a new physical organic research direction that examines how structure affects the 1° isotope dependence of 2° KIEs and how this dependence provides information about the structure of the tunneling ready states (TRSs).

View Article and Find Full Text PDF