Approximate symmetries abound in nature. If these symmetries are also spontaneously broken, the would-be Goldstone modes acquire a small mass, or inverse correlation length, and are referred to as pseudo-Goldstones. At nonzero temperature, the effects of dissipation can be captured by hydrodynamics at sufficiently long scales compared to the local equilibrium.
View Article and Find Full Text PDFThe normal density of a translation-invariant superfluid often vanishes at zero temperature, as is observed in superfluid Helium and conventional superconductors described by BCS theory. Here we show that this need not be the case. We investigate the normal density in models of quantum critical superfluids using gauge-gravity duality.
View Article and Find Full Text PDFIn this Letter, we uncover a universal relaxation mechanism of pinned density waves, combining gauge-gravity duality and effective field theory techniques. Upon breaking translations spontaneously, new gapless collective modes emerge, the Nambu-Goldstone bosons of broken translations. When translations are also weakly broken (e.
View Article and Find Full Text PDFThe dissipative dynamics of strongly interacting systems are often characterized by the timescale set by the inverse temperature τ_{P}∼ℏ/(k_{B}T). We show that near a class of strongly interacting quantum critical points that arise in the infrared limit of translationally invariant holographic theories, there is a collective excitation (a quasinormal mode of the dual black hole spacetime) whose lifetime τ_{eq} is parametrically longer than τ_{P}: τ_{eq}≫T^{-1}. The lifetime is enhanced due to its dependence on a dangerously irrelevant coupling that breaks the particle-hole symmetry and the invariance under Lorentz boosts of the quantum critical point.
View Article and Find Full Text PDFIn contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling.
View Article and Find Full Text PDF