Publications by authors named "Blair W Benham-Pyle"

The contribution of RNA modifications to whole-body regeneration remains unclear. In this issue, Dagan et al (2022) show that m6a mRNA pathway components are critically required for stem cell differentiation, survival, and tissue renewal in the planarian Schmidtea mediterranea.

View Article and Find Full Text PDF

Regeneration requires the coordination of stem cells, their progeny and distant differentiated tissues. Here, we present a comprehensive atlas of whole-body regeneration in Schmidtea mediterranea and identify wound-induced cell states. An analysis of 299,998 single-cell transcriptomes captured from regeneration-competent and regeneration-incompetent fragments identified transient regeneration-activated cell states (TRACS) in the muscle, epidermis and intestine.

View Article and Find Full Text PDF

Differential coordination of growth and patterning across metazoans gives rise to a diversity of sizes and shapes at tissue, organ and organismal levels. Although tissue size and tissue function can be interdependent, mechanisms that coordinate size and function remain poorly understood. Planarians are regenerative flatworms that bidirectionally scale their adult body size and reproduce asexually, via transverse fission, in a size-dependent manner.

View Article and Find Full Text PDF

Mechanical force and Wnt signaling activate β-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate β-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 β-catenin and increased β-catenin-mediated transcription in mammalian MDCK epithelial cells.

View Article and Find Full Text PDF

Mechanical strain regulates the development, organization, and function of multicellular tissues, but mechanisms linking mechanical strain and cell-cell junction proteins to cellular responses are poorly understood. Here, we showed that mechanical strain applied to quiescent epithelial cells induced rapid cell cycle reentry, mediated by independent nuclear accumulation and transcriptional activity of first Yap1 and then β-catenin. Inhibition of Yap1- and β-catenin-mediated transcription blocked cell cycle reentry and progression through G1 into S phase, respectively.

View Article and Find Full Text PDF