Publications by authors named "Blair Schoene"

Crystallization of the lunar magma ocean yielded a chemically unique liquid residuum named KREEP. This component is expressed as a large patch on the near side of the Moon and a possible smaller patch in the northwest portion of the Moon's South Pole-Aitken basin on the far side. Thermal models estimate that the crystallization of the lunar magma ocean (LMO) could have spanned from 10 and 200 My, while studies of radioactive decay systems have yielded inconsistent ages for the completion of LMO crystallization covering over 160 My.

View Article and Find Full Text PDF

Northeast China's Early Cretaceous Yixian Formation preserves spectacular fossils that have proved extraordinarily important in testing evolutionary hypotheses involving the origin of birds and the distribution of feathers among nonavian dinosaurs. These fossils occur either flattened with soft tissue preservation (including feathers and color) in laminated lacustrine strata or as three-dimensional (3D) skeletons in "life-like" postures in more massive deposits. The relationships of these deposits to each other, their absolute ages, and the origin of the extraordinary fossil preservation have been vigorously debated for nearly a half century, with the prevailing view being that preservation was linked to violent volcanic eruptions or lahars, similar to processes that preserved human remains at Pompeii.

View Article and Find Full Text PDF

The Moon has had a complex history, with evidence of its primary crust formation obscured by later impacts. Existing U-Pb dates of >500 zircons from several locations on the lunar nearside reveal a pronounced age peak at 4.33 billion years (Ga), suggesting a major, potentially global magmatic event.

View Article and Find Full Text PDF

Zircons are found in extraterrestrial rocks from the Moon, Mars, and some differentiated meteorite parent-bodies. These zircons are rare, often of small size, and have been affected by neutron capture induced by cosmic ray exposure. The application of the Lu-Hf decay system to zircons from planetary bodies such as the Moon can help establish the chronology of large-scale differentiation processes such as the crystallization of the lunar magma ocean.

View Article and Find Full Text PDF

Age determination of minerals using the U-Pb technique is widely used to quantify time in Earth's history. A number of geochronology laboratories produce the highest precision U-Pb dates employing the EARTHTIME Pb-Pb-U-U tracer solution for isotope dilution, and the EARTHTIME ET100 and ET2000 solutions for system calibration and laboratory intercalibration. Here, we report ET100 and ET2000 solution data from the geochronology laboratory of University of Geneva obtained between 2008 and 2021 and compare the most recent data with results from the geochronology laboratories of Princeton University and ETH Zürich.

View Article and Find Full Text PDF

Rhyolitic melt that fuels explosive eruptions often originates in the upper crust via extraction from crystal-rich sources, implying an evolutionary link between volcanism and residual plutonism. However, the time scales over which these systems evolve are mainly understood through erupted deposits, limiting confirmation of this connection. Exhumed plutons that preserve a record of high-silica melt segregation provide a critical subvolcanic perspective on rhyolite generation, permitting comparison between time scales of long-term assembly and transient melt extraction events.

View Article and Find Full Text PDF

Snowball Earth episodes, times when the planet was covered in ice, represent the most extreme climate events in Earth's history. Yet, the mechanisms that drive their initiation remain poorly constrained. Current climate models require a cool Earth to enter a Snowball state.

View Article and Find Full Text PDF

Temporal correlation between some continental flood basalt eruptions and mass extinctions has been proposed to indicate causality, with eruptive volatile release driving environmental degradation and extinction. We tested this model for the Deccan Traps flood basalt province, which, along with the Chicxulub bolide impact, is implicated in the Cretaceous-Paleogene (K-Pg) extinction approximately 66 million years ago. We estimated Deccan eruption rates with uranium-lead (U-Pb) zircon geochronology and resolved four high-volume eruptive periods.

View Article and Find Full Text PDF

Here, we document a detailed characterisation of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass at 19.2 carats (3.

View Article and Find Full Text PDF

Flood basalts, the largest volcanic events in Earth history, are thought to drive global environmental change because they can emit large volumes of CO and SO over short geologic time scales. Eruption of the Columbia River Basalt Group (CRBG) has been linked to elevated atmospheric CO and global warming during the mid-Miocene climate optimum (MMCO) ~16 million years (Ma) ago. However, a causative relationship between volcanism and warming remains speculative, as the timing and tempo of CRBG eruptions is not well known.

View Article and Find Full Text PDF

Establishing the age of the Moon is critical to understanding solar system evolution and the formation of rocky planets, including Earth. However, despite its importance, the age of the Moon has never been accurately determined. We present uranium-lead dating of Apollo 14 zircon fragments that yield highly precise, concordant ages, demonstrating that they are robust against postcrystallization isotopic disturbances.

View Article and Find Full Text PDF

The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions.

View Article and Find Full Text PDF

The continental crust is central to the biological and geological history of Earth. However, crustal heterogeneity has prevented a thorough geochemical comparison of its primary igneous building blocks-volcanic and plutonic rocks-and the processes by which they differentiate to felsic compositions. Our analysis of a comprehensive global data set of volcanic and plutonic whole-rock geochemistry shows that differentiation trends from primitive basaltic to felsic compositions for volcanic versus plutonic samples are generally indistinguishable in subduction-zone settings, but are divergent in continental rifts.

View Article and Find Full Text PDF

The Chicxulub asteroid impact (Mexico) and the eruption of the massive Deccan volcanic province (India) are two proposed causes of the end-Cretaceous mass extinction, which includes the demise of nonavian dinosaurs. Despite widespread acceptance of the impact hypothesis, the lack of a high-resolution eruption timeline for the Deccan basalts has prevented full assessment of their relationship to the mass extinction. Here we apply uranium-lead (U-Pb) zircon geochronology to Deccan rocks and show that the main phase of eruptions initiated ~250,000 years before the Cretaceous-Paleogene boundary and that >1.

View Article and Find Full Text PDF

The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias.

View Article and Find Full Text PDF