Publications by authors named "Blair J Cox"

The acidic ionic liquid 1-H-3-methylimidazolium chloride can effectively pretreat yellow pine wood chips under mild conditions for enzymatic saccharification. Wood samples were treated at temperatures between 110 and 150°C for up to 5 h in the ionic liquid and three fractions collected; a cellulose rich fraction, lignin, and an aqueous fraction. This treatment caused the hemicellulose and the lignin to be degraded and dissolved from the cell walls of the pine wood.

View Article and Find Full Text PDF

Oak wood lignin, which was separated from the wood using dissolution in the ionic liquid 1-methyl-3-ethylimidazolium acetate and subsequent precipitation, was successfully depolymerized in the acidic ionic liquid 1-H-3-methylimidazolium chloride under mild conditions (110-150 °C). Based on gel permeation chromatography results, an increase in temperature from 110 to 150 °C increased the rate of reaction, but did not significantly change the final size of the lignin fragments. Nuclear magnetic resonance and infrared spectroscopy were utilized to demonstrate that the depolymerization proceeded via a hydrolysis reaction that cleaved the alkyl-aryl ether linkages.

View Article and Find Full Text PDF

The hydrolysis of β--O--4 bonds in two lignin model compounds was studied in an acidic ionic liquid, 1-H-3-methylimidazolium chloride. The β--O--4 bonds of both guaiacylglycerol-β-guaiacyl ether and veratrylglycerol-β-guaiacyl ether underwent catalytic hydrolysis to produce guaiacol as the primary product with more than 70 % yield at 150 °C. Up to 32 wt % substrate concentration could be treated in the system without a decrease in guaiacol production.

View Article and Find Full Text PDF