Publications by authors named "Blair Bradford"

Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity.

View Article and Find Full Text PDF

Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of interindividual variability in TCE metabolism and toxicity, especially in the liver. A hypothesis was tested that amounts of oxidative metabolites of TCE in mouse liver are associated with hepatic-specific toxicity.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) mostly develops in patients with advanced fibrosis; however, the mechanisms of interaction between a genotoxic insult and fibrogenesis are not well understood. This study tested a hypothesis that fibrosis promotes HCC via a mechanism that involves activation of liver stem cells. First, B6C3F1 mice were administered diethylnitrosamine (DEN; single ip injection of 1mg/kg at 14 days of age).

View Article and Find Full Text PDF

The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects.

View Article and Find Full Text PDF

It has been demonstrated that a wide variety of white blood cells and macrophages (i.e. Kupffer cells, alveolar and peritoneal macrophages and neutrophils) contain glycine-gated chloride channels.

View Article and Find Full Text PDF

Viral hepatitis and aflatoxin B1 (AFB1) exposure are common risk factors for hepatocellular carcinoma (HCC). The incidence of HCC in individuals coexposed to hepatitis C (HCV) or B virus and AFB1 is greater than could be explained by the additive effect; yet, the mechanisms are poorly understood because of the lack of an animal model. Our study investigated the outcomes and mechanisms of combined exposure to HCV and AFB1.

View Article and Find Full Text PDF

Trichloroethylene (TCE) is a widely used industrial chemical and a common environmental contaminant. It is a well-known carcinogen in rodents and a probable carcinogen in humans. Studies utilizing panels of mouse inbred strains afford a unique opportunity to understand both metabolic and genetic basis for differences in responses to TCE.

View Article and Find Full Text PDF

Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality over subsequent isolations, and assess the utility of the model for toxicity screening.

View Article and Find Full Text PDF

Differences in clinical phenotypes between the sexes are well documented and have their roots in differential gene expression. While sex has a major effect on gene expression, transcription is also influenced by complex interactions between individual genetic variation and environmental stimuli. In this study, we sought to understand how genetic variation affects sex-related differences in liver gene expression by performing genetic mapping of genomewide liver mRNA expression data in a genetically defined population of naive male and female mice from C57BL/6J, DBA/2J, B6D2F1, and 37 C57BL/6J x DBA/2J (BXD) recombinant inbred strains.

View Article and Find Full Text PDF

Alcohol-induced liver injury (ALI) has been associated with, among other molecular changes, abnormal hepatic methionine metabolism, resulting in decreased levels of S-adenosylmethionine (SAM). Dietary methyl donor supplements such as SAM and betaine mitigate ALI in animal models; however, the mechanisms of protection remain elusive. It has been suggested that methyl donors may act via attenuation of alcohol-induced oxidative stress.

View Article and Find Full Text PDF

Trichloroethylene (TCE, CAS 79-01-6) is a widely used industrial chemical, and a common environmental pollutant. TCE is a well-known carcinogen in rodents and is classified as "probably carcinogenic to humans". Several analytical methods have been proposed for detection of TCE metabolites in biological media utilizing derivatization-free techniques; however, none of them is suitable for simultaneous detection of both oxidative metabolites and glutathione conjugates of TCE in small volume biological samples.

View Article and Find Full Text PDF

Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR)alpha are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPARalpha will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time-course in the mouse liver, microarray technology was used.

View Article and Find Full Text PDF

Metabolomic evaluation of urine and liver was conducted to assess the biochemical changes that occur as a result of alcohol-induced liver injury. Male C57BL/6J mice were fed an isocaloric control- or alcohol-containing liquid diet with 35% of calories from corn oil, 18% protein and 47% carbohydrate/alcohol for up to 36 days ad libitum. Alcohol treatment was initiated at 7 g/kg/day and gradually reached a final dose of 21 g/kg/day.

View Article and Find Full Text PDF

Administration of peroxisome proliferators to rodents causes proliferation of peroxisomes, induction of beta-oxidation enzymes, hepatocellular hypertrophy and hyperplasia, with chronic exposure ultimately leading to hepatocellular carcinomas. Many responses associated with peroxisome proliferators are nuclear receptor-mediated events involving peroxisome proliferators-activated receptor alpha (PPARalpha). A role for nuclear receptor-independent events has also been shown, with evidence of Kupffer cell-mediated free radical production, presumably through NAPDH oxidase, induction of redox-sensitive transcription factors involved in cytokine production and cytokine-mediated cell replication following acute treatment with peroxisome proliferators in rodents.

View Article and Find Full Text PDF

The Swift Increase in Alcohol Metabolism occurs within 2.5 h after an acute gavage of ethanol causing an increase in hepatic respiration, an increase in alcohol metabolism, and pericentral hypoxia in the perfused liver. Alcohol treatment causes a release of endotoxin, activation of Kupffer cells to produce PGE(2), therefore, stimulating mitochondrial function resulting in an increase in cofactor supply for nicotinamide adenine dinucleotide (NAD)-dependent alcohol metabolism and depletion of glycogen reserves.

View Article and Find Full Text PDF

Gene expression profiling is a widely used technique with data from the majority of published microarray studies being publicly available. These data are being used for meta-analyses and in silico discovery; however, the comparability of toxicogenomic data generated in multiple laboratories has not been critically evaluated. Using the power of prospective multilaboratory investigations, seven centers individually conducted a common toxicogenomics experiment designed to advance understanding of molecular pathways perturbed in liver by an acute toxic dose of N-acetyl-p-aminophenol (APAP) and to uncover reproducible genomic signatures of APAP-induced toxicity.

View Article and Find Full Text PDF

Rapid changes in rates of ethanol metabolism in response to acute ethanol administration have been observed in animals and humans. To examine whether this phenomenon might vary by risk for alcoholism, 23 young men with a positive family history of alcoholism (family history positive [FHP]) were compared to 15 young men without a family history of alcoholism (family history negative [FHN]). Rates of ethanol metabolism were measured in all subjects first after an initial ethanol dose (0.

View Article and Find Full Text PDF

Long-term exposure of rodents to peroxisome proliferators leads to increases in peroxisomes, hepatocellular proliferation, oxidative damage, suppressed apoptosis, and ultimately results in the development of hepatic adenomas and carcinomas. Peroxisome proliferators-activated receptor (PPAR)alpha was shown to be required for these pleiotropic responses; however, Kupffer cells, resident liver macrophages, were also identified as playing a role in peroxisome proliferators-induced effects, independently of PPARalpha. Previous studies showed that oxidants from NADPH (nicotinamide adenine dinucleotide phosphate, reduced) oxidase mediate acute effects of peroxisome proliferators in rodent liver.

View Article and Find Full Text PDF

Reactive oxygen species are thought to be crucial for peroxisome proliferator-induced liver carcinogenesis. Free radicals have been shown to mediate the production of mitogenic cytokines by Kupffer cells and cause DNA damage in rodent liver. Previous in vivo experiments demonstrated that acute administration of the peroxisome proliferator di(2-ethylhexyl) phthalate (DEHP) led to an increase in production of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts in liver, an event that was dependent on Kupffer cell NADPH oxidase, but not peroxisome proliferator-activated receptor (PPAR)alpha.

View Article and Find Full Text PDF

Hemorrhagic shock and resuscitation cause endotoxemia and hepatocellular damage. Because lipopolysaccharide-binding protein (LBP) enhances cellular responses to endotoxin, our aim was to determine whether LBP contributes to hemorrhage/resuscitation-induced injury by comparing LBP knockout and wild-type mice. Under pentobarbital anaesthesia, wild-type and LBP-deficient mice were hemorrhaged to 30 mmHg for 3 h and then resuscitated with shed blood plus half the volume of lactated Ringer solution.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the terminal event in chronic liver diseases with repeated cycles of cellular injury and regeneration. Although much is known about the cellular pathogenesis and etiological agents leading to HCC, the molecular events are not well understood. The choline-deficient (CD) model of rodent HCC involves the consecutive emergence of a fatty liver, apoptosis, compensatory proliferation, fibrosis, and cirrhosis that is markedly similar to the sequence of events typified by human HCC.

View Article and Find Full Text PDF

The swift increase in alcohol metabolism (SIAM) is a phenomenon defined as a rapid increase in hepatic respiration and alcohol metabolism after administration of a bolus dose of alcohol. Continuous exposure to alcohol is known to produce adaptive changes in liver alcohol and oxygen metabolism. A considerable burst of hepatic respiration can also occur after administration of a single large dose of alcohol and results in a near doubling of alcohol metabolism, a high demand for oxygen, and downstream or pericentral hypoxia.

View Article and Find Full Text PDF

To facilitate collaborative research efforts between multi-investigator teams using DNA microarrays, we identified sources of error and data variability between laboratories and across microarray platforms, and methods to accommodate this variability. RNA expression data were generated in seven laboratories, which compared two standard RNA samples using 12 microarray platforms. At least two standard microarray types (one spotted, one commercial) were used by all laboratories.

View Article and Find Full Text PDF

The occurrence of malignant tumors of the upper gastrointestinal tract and liver is, based largely on epidemiological evidence, causally related to the consumption of ethanol. It is widely recognized that oxidants play a key role in alcohol-induced liver injury; however, it is unclear how oxidants may be involved in DNA damage. We asked whether nicotinamide adenine dinucleotide phosphate oxidase, cytochrome P450 CYP2E1, or both are responsible for the production of DNA damage.

View Article and Find Full Text PDF

Liver fibrosis is characterized by increased synthesis, and decreased degradation, of extracellular matrix (ECM) within the injured tissue. Decreased ECM degradation results, in part, from increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), which blocks matrix metalloproteinase (MMP) activity. TIMP-1 is also involved in promoting survival of activated hepatic stellate cells (HSCs), a major source of ECM.

View Article and Find Full Text PDF