Publications by authors named "Blaha C"

Stereotactic systems have traditionally used Cartesian coordinate combined with linear algebraic mathematical models to navigate the brain. Previously, the development of a novel stereotactic system allowed for improved patient comfort, reduced size, and carried through a simplified interface for surgeons. The system was designed with a work envelope and trajectory range optimized for deep brain stimulation applications only.

View Article and Find Full Text PDF

The neurophysiology of alcohol use disorder (AUD) is complex, but a major contributor to addictive phenotypes is the tendency for drugs of abuse to increase tonic extracellular dopamine (DA) levels in the nucleus accumbens (NAc). Repeated exposure to substances of abuse such as ethanol results in the overstimulation of the mesolimbic pathway, causing an excessive release of DA from the ventral tegmental area (VTA) to target regions such as the NAc. This heightened DA signaling is associated with the reinforcing effects of substances, leading to a strong desire for continued use.

View Article and Find Full Text PDF

Dopamine (DA) is a neurotransmitter present within the animal brain that is responsible for a wide range of physiologic functions, including motivation, reward, and movement control. Changes or dysfunction in the dynamics of DA release are thought to play a pivotal role in regulating various physiological and behavioral processes, as well as leading to neuropsychiatric diseases. Therefore, it is of fundamental interest to neuroscientists to understand and accurately model the kinetics that govern dopaminergic neurotransmission.

View Article and Find Full Text PDF

Preclinical models indicate that amiloride (AMD) reduces baroreflex sensitivity and perturbs homeostatic blood pressure (BP) regulation. However, it remains unclear whether these findings translate to humans. This study investigated whether oral administration of AMD reduces spontaneous cardiac and sympathetic baroreflex sensitivity and perturbs BP regulation in healthy young humans.

View Article and Find Full Text PDF

Numerous studies have shown that oxidative stress plays an important role in peripheral artery disease (PAD). Prior reports suggested autonomic dysfunction in PAD. We hypothesized that responses of the autonomic nervous system and coronary tone would be impaired in patients with PAD during exposure to acute hyperoxia, an oxidative stressor.

View Article and Find Full Text PDF

With advances in our understanding regarding the neurochemical underpinnings of neurological and psychiatric diseases, there is an increased demand for advanced computational methods for neurochemical analysis. Despite having a variety of techniques for measuring tonic extracellular concentrations of neurotransmitters, including voltammetry, enzyme-based sensors, amperometry, and in vivo microdialysis, there is currently no means to resolve concentrations of structurally similar neurotransmitters from mixtures in the in vivo environment with high spatiotemporal resolution and limited tissue damage. Since a variety of research and clinical investigations involve brain regions containing electrochemically similar monoamines, such as dopamine and norepinephrine, developing a model to resolve the respective contributions of these neurotransmitters is of vital importance.

View Article and Find Full Text PDF

Background: Treatment of refractory bipolar disorder (BD) is extremely challenging. Deep brain stimulation (DBS) holds promise as an effective treatment intervention. However, we still understand very little about the mechanisms of DBS and its application on BD.

View Article and Find Full Text PDF

Background: Silicon nanopore membrane-based implantable bioartificial organs are dependent on arteriovenous implantation of a mechanically robust and biocompatible hemofilter. The hemofilter acts as a low-resistance, high-flow network, with blood flow physiology similar to arteriovenous shunts commonly created for hemodialysis access. A mock circulatory loop (MCL) that mimics shunt physiology is an essential tool for refinement and durability testing of arteriovenous implantable bioartificial organs and silicon blood-interfacing membranes.

View Article and Find Full Text PDF

Autonomic dysfunction is a common complication of type 2 diabetes mellitus (T2DM). However, the character of dysfunction varies in different reports. Differences in measurement methodology and complications might have influenced the inconsistent results.

View Article and Find Full Text PDF
Article Synopsis
  • - Serotonin (5-HT) is a key neurotransmitter in the brain that influences mood and behaviors, and is linked to mental health issues like depression, addiction, and schizophrenia.
  • - There are various techniques for measuring serotonin in the brain, each with unique characteristics such as size, resolution, and measurement capabilities that researchers must consider for their studies.
  • - This review discusses current methods for measuring serotonin, its role in psychiatric conditions, and the potential of advanced systems like deep brain stimulation for clinical applications.
View Article and Find Full Text PDF
Article Synopsis
  • Reliable large animal models for renal failure are essential for advancing renal replacement therapies (RRT) that can be used in humans.
  • This study introduced a novel embolization-to-implantation protocol that successfully integrated a silicon nanopore membrane hemodialyzer (SNMHD) into a swine model of renal failure.
  • The findings showed promising clearance rates for creatinine and urea using the SNMHD, suggesting potential for future clinical applications with fully implantable devices.*
View Article and Find Full Text PDF

The definitive treatment for end-stage renal disease is kidney transplantation, which remains limited by organ availability and post-transplant complications. Alternatively, an implantable bioartificial kidney could address both problems while enhancing the quality and length of patient life. An implantable bioartificial kidney requires a bioreactor containing renal cells to replicate key native cell functions, such as water and solute reabsorption, and metabolic and endocrinologic functions.

View Article and Find Full Text PDF

Recent studies suggest that SARS-CoV-2 infection alters autonomic and vascular function in young, otherwise healthy, adults. However, whether these alterations exist in young competitive athletes remains unknown. This study aimed to assess the effects of COVID-19 on cardiac autonomic control and vascular function in collegiate athletes who tested positive for COVID-19, acknowledging the limitations imposed by the early stages of the pandemic.

View Article and Find Full Text PDF

Peripheral artery disease (PAD) refers to obstructed blood flow in peripheral arteries typically due to atherosclerotic plaques. How PAD alters aortic blood pressure and pressure wave propagation during exercise is unclear. Thus, this study examined central blood pressure responses to plantar flexion exercise by investigating aortic pulse wave properties in PAD.

View Article and Find Full Text PDF

Opioids are the leading cause of overdose death in the United States, accounting for almost 70,000 deaths in 2020. Deep brain stimulation (DBS) is a promising new treatment for substance use disorders. Here, we hypothesized that VTA DBS would modulate both the dopaminergic and respiratory effect of oxycodone.

View Article and Find Full Text PDF

Tourette syndrome is a childhood-onset neuropsychiatric disorder characterized by intrusive motor and vocal tics that can lead to self-injury and deleterious mental health complications. While dysfunction in striatal dopamine neurotransmission has been proposed to underlie tic behaviour, evidence is scarce and inconclusive. Deep brain stimulation (DBS) of the thalamic centromedian parafascicular complex (CMPf), an approved surgical interventive treatment for medical refractory Tourette syndrome, may reduce tics by affecting striatal dopamine release.

View Article and Find Full Text PDF

Background: Peripheral venous distension evokes a pressor reflex (venous distension reflex). Afferent group III and IV nerves innervating veins are suggested as the afferent arm of the venous distension reflex. Prostaglandins stimulate/sensitize group III/IV nerves.

View Article and Find Full Text PDF
Article Synopsis
  • Clinical islet transplantation for type 1 diabetes is hindered by the lack of pancreas donors and the necessity for lifelong immunosuppression.
  • Researchers are exploring a new bioartificial pancreas (iBAP) that utilizes silicon nanopore membranes to potentially replace the need for immunosuppressants while maintaining islet function.
  • Their findings indicate that for effective insulin production, specific perifusion rates must be met, with successful insulin secretion responses observed in both lab and live pig models.
View Article and Find Full Text PDF

Sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) influences on cardiac rhythm at the onset of exercise, a time of rapid autonomic adjustments, are clinically important areas of investigation. Continuous wavelet transform (CWT) involves time-frequency-based heart rate variability (HRV) analysis allowing investigation of autonomic influences on cardiac rhythm during short durations of exercise. Therefore, the purpose of this study was to characterize SNS and PNS influences on cardiac rhythm at the onset of isometric exercise in healthy young adults.

View Article and Find Full Text PDF

Cocaine's addictive properties stem from its capacity to increase tonic extracellular dopamine levels in the nucleus accumbens (NAc). The ventral tegmental area (VTA) is a principal source of NAc dopamine. To investigate how high frequency stimulation (HFS) of the rodent VTA or nucleus accumbens core (NAcc) modulates the acute effects of cocaine administration on NAcc tonic dopamine levels multiple-cyclic square wave voltammetry (M-CSWV) was used.

View Article and Find Full Text PDF

The combination of electrophysiology and electrochemistry acquisition methods using a single carbon fiber microelectrode (CFM) in the brain has enabled more extensive analysis of neurochemical release, neural activity, and animal behavior. Predominantly, analog CMOS (Complementary Metal Oxide Semiconductor) switches are used for these interleaved applications to alternate the CFM output between electrophysiology and electrochemistry acquisition circuitry. However, one underlying issue with analog CMOS switches is the introduction of transient voltage artifacts in recorded electrophysiology signals resulting from CMOS charge injection.

View Article and Find Full Text PDF

Unlabelled: Skeletal muscle perfusion and oxygenation are commonly evaluated using Doppler ultrasound and near-infrared spectroscopy (NIRS) techniques. However, a recently developed magnetic resonance imaging (MRI) sequence, termed PIVOT, permits the simultaneous collection of skeletal muscle perfusion and T2* (an index of skeletal muscle oxygenation).

Purpose: To determine the level of agreement between PIVOT, Doppler ultrasound, and NIRS-based assessments of skeletal muscle perfusion and oxygenation.

View Article and Find Full Text PDF

Amiloride has been shown to inhibit acid-sensing ion channels (ASICs), which contribute to ischemia-related muscle pain during exercise. The purpose of this study was to determine if a single oral dose of amiloride would improve exercise tolerance and attenuate blood pressure during blood-flow-restricted (BFR) exercise in healthy adults. Ten subjects (4 females) performed isometric plantar flexion exercise with BFR (30% maximal voluntary contraction) after ingesting either a 10-mg dose of amiloride or a volume-matched placebo (random order).

View Article and Find Full Text PDF

Tonic extracellular neurotransmitter concentrations are important modulators of central network homeostasis. Disruptions in these tonic levels are thought to play a role in neurologic and psychiatric disease. Therefore, ways to improve their quantification are actively being investigated.

View Article and Find Full Text PDF

Neurotransmitters, such as dopamine and serotonin, are responsible for mediating a wide array of neurologic functions, from memory to motivation. From measurements using fast scan cyclic voltammetry (FSCV), one of the main tools used to detect synaptic efflux of neurochemicals , principal component regression (PCR), has been commonly used to predict the identity and concentrations of neurotransmitters. However, the sensitivity and discrimination performance of PCR have room for improvement, especially for analyzing mixtures of similar oxidizable neurochemicals.

View Article and Find Full Text PDF