Publications by authors named "Blaga C"

Tungsten diselenide (WSe) is a 2D semiconducting material, promising for novel optoelectronic and phononic applications. WSe has complex lattice dynamics and phonon structure. Numerous discrepancies in the literature exist regarding the interpretation and identification of phonon modes.

View Article and Find Full Text PDF

Studies of laser-driven strong field processes subjected to a (quasi-)static field have been mainly confined to theory. Here we provide an experimental realization by introducing a bichromatic approach for high harmonic generation (HHG) in a dielectric that combines an intense 70 femtosecond duration mid-infrared driving field with a weak 2 picosecond period terahertz (THz) dressing field. We address the physics underlying the THz field induced static symmetry breaking and its consequences on the efficient production/suppression of even-/odd-order harmonics, and demonstrate the ability to probe the HHG dynamics via the modulation of the harmonic distribution.

View Article and Find Full Text PDF

Molecular structural retrieval based on electron diffraction has been proposed to determine the atomic positions of molecules with sub-angstrom spatial and femtosecond temporal resolutions. Given its success on small molecular systems, in this work, we point out that the accuracy of structure retrieval is constrained by the availability of a wide range of experimental data in the momentum space in all molecular systems. To mitigate the limitations, for laser-induced electron diffraction, here we retrieve molecular structures using two-dimensional (energy and angle) electron momentum spectra in the laboratory frame for a number of small molecular systems, which have previously been studied with 1D methods.

View Article and Find Full Text PDF

Theoretical studies indicated that C_{60} exposed to linearly polarized intense infrared pulses undergoes periodic cage structural distortions with typical periods around 100 fs (1  fs=10^{-15}  s). Here, we use the laser-driven self-imaging electron diffraction technique, previously developed for atoms and small molecules, to measure laser-induced deformation of C_{60} in an intense 3.6  μm laser field.

View Article and Find Full Text PDF

Forensic application of carbon isotope ratio measurements of honey and honey protein to investigate the degree of adulteration with high fructose corn syrup or other C plant sugars is well established. These measurements must use methods that exhibit suitable performance criteria, particularly with regard to measurement uncertainty and traceability - low levels of adulteration can only be detected by methods that result in suitably small measurement uncertainties such that differences of 1‰ or less can be reliably detected. Inter-laboratory exercises are invaluable to assess the state-of-the art of measurement capabilities of laboratories necessary to achieve such performance criteria.

View Article and Find Full Text PDF

We investigate the harmonic generation induced by the interaction of a laser field with a solid target. The harmonic spectra is composed of the contribution of two processes interpreted as interband and intraband transitions. The interband process corresponds to the recombination from an upper band, populated during the laser interaction, to a lower band.

View Article and Find Full Text PDF

Femtosecond laser-induced damage and ablation (fs-LIDA) is a rich field in extreme non-perturbative nonlinear optics with wide ranging applications, including laser micro- and nano-machining, waveguide writing, and eye surgery. Our understanding of fs-LIDA, however, is limited mostly to visible and near-infrared wavelengths. In this work, we systematically study single-shot, fs-laser ablation (fs-LIA) of single-crystal germanium from near- to mid-infrared wavelengths, and compare the fs-LIA wavelength scaling with two widely used models.

View Article and Find Full Text PDF

High-harmonic generation from gases produces attosecond bursts and enables high-harmonic spectroscopy to explore electron dynamics in atoms and molecules. Recently, high-harmonic generation from solids has been reported, resulting in novel phenomena and unique control of the emission, absent in gas-phase media. Here we investigate high harmonics from semiconductors with controllable induced photo-carrier densities, as well as the driving wavelengths.

View Article and Find Full Text PDF

We report on the generation of harmonic-like photon upconversion in a LiNbO-based nonlinear photonic crystal by mid-infrared (MIR) femtosecond laser pulses. We study below bandgap harmonics of various driver wavelengths, reaching up to the 11th order at 4 μm driver with 13% efficiency. We compare our results to numerical simulations based on two mechanisms: cascade three-wave mixing and non-perturbative harmonic generation, both of which include quasi-phase matching.

View Article and Find Full Text PDF

We report on a tunable intense femtosecond mid-infrared (mid-IR) light source carrying orbital angular momentum (OAM). Our setup is based on an optical parametric amplification system with an 800 nm pump shaped with a spiral phase plate. We confirm the anisotropic OAM transfer from the pump to the idler through stimulated difference frequency generation by measuring the diffraction patterns of a triangular aperture illuminated by the signal, pump, and idler beams.

View Article and Find Full Text PDF

Studying links between triacetone triperoxide (TATP) samples from crime scenes and suspects can assist in criminal investigations. Isotope ratio mass spectrometry (IRMS) and gas chromatography (GC)-IRMS were used to measure the isotopic compositions of TATP and its precursors acetone and hydrogen peroxide. In total, 31 TATP samples were synthesized with different raw material combinations and reaction conditions.

View Article and Find Full Text PDF

Laser induced periodic surface structures (LIPSS or ripples) were generated on single crystal germanium after irradiation with multiple 3 µm femtosecond laser pulses at a 45° angle of incidence. High and low spatial frequency LIPSS (HSFL and LSFL, respectively) were observed for both s- and p-polarized light. The measured LSFL period for p-polarized light was consistent with the currently established LIPSS origination model of coupling between surface plasmon polaritons (SPP) and the incident laser pulses.

View Article and Find Full Text PDF

What Is Known And Objective: Budesonide, an oral glucocorticoid indicated for the treatment of Crohn's disease, rarely interferes with the hypothalamic-pituitary-adrenal axis because more than 80% of it is metabolized by cytochrome P450 enzymes.

Case Summary: A 33-year-old female patient diagnosed with Crohn's disease, treated with oral budesonide, was admitted for Cushingoid symptoms and signs. The onset coincided with the use of fluvoxamine, a serotonin reuptake inhibitor and also a potent inhibitor of cytochrome P450 enzymes that presumably led to budesonide accumulation.

View Article and Find Full Text PDF

Directly monitoring atomic motion during a molecular transformation with atomic-scale spatio-temporal resolution is a frontier of ultrafast optical science and physical chemistry. Here we provide the foundation for a new imaging method, fixed-angle broadband laser-induced electron scattering, based on structural retrieval by direct one-dimensional Fourier transform of a photoelectron energy distribution observed along the polarization direction of an intense ultrafast light pulse. The approach exploits the scattering of a broadband wave packet created by strong-field tunnel ionization to self-interrogate the molecular structure with picometre spatial resolution and bond specificity.

View Article and Find Full Text PDF

A calculation of the second-order (rescattering) term in the S-matrix expansion of above-threshold ionization is presented for the case when the binding potential is the unscreened Coulomb potential. Technical problems related to the divergence of the Coulomb scattering amplitude are avoided in the theory by considering the depletion of the atomic ground state due to the applied laser field, which is well defined and does not require the introduction of a screening constant. We focus on the low-energy structure, which was observed in recent experiments with a midinfrared wavelength laser field.

View Article and Find Full Text PDF

Recently, using midinfrared laser-induced electron diffraction (LIED), snapshots of a vibrating diatomic molecule on a femtosecond time scale have been captured [C.I. Blaga et al.

View Article and Find Full Text PDF

The discovery of Archaea carrying an amoA gene coding for the A-subunit of ammonia monooxygenase gave a boost to studies aimed at detecting this gene under diverse conditions. Despite numerous studies describing the archaeal amoA gene abundance and richness in different habitats, the understanding of the freshwater ecology of potentially archaeal ammonia oxidizers, recently positioned in the phylum Thaumarchaeota, is still lacking. In a seasonal and vertical study of deep oligotrophic Lake Lucerne, Switzerland, with high Thaumarchaeota-specific crenarchaeol concentrations, we showed that all archaeal 16S rRNA genes found belong to the thaumarchaeotal phylum.

View Article and Find Full Text PDF

Intense, 100 fs laser pulses at 3.2 and 3.6 μm are used to generate, by multiphoton ionization, broadband wave packets with up to 400 eV of kinetic energy and charge states up to Xe(+6).

View Article and Find Full Text PDF

Establishing the structure of molecules and solids has always had an essential role in physics, chemistry and biology. The methods of choice are X-ray and electron diffraction, which are routinely used to determine atomic positions with sub-ångström spatial resolution. Although both methods are currently limited to probing dynamics on timescales longer than a picosecond, the recent development of femtosecond sources of X-ray pulses and electron beams suggests that they might soon be capable of taking ultrafast snapshots of biological molecules and condensed-phase systems undergoing structural changes.

View Article and Find Full Text PDF

The nonlinear absorption mechanisms of neon atoms to intense, femtosecond kilovolt x rays are investigated. The production of Ne(9+) is observed at x-ray frequencies below the Ne(8+), 1s(2) absorption edge and demonstrates a clear quadratic dependence on fluence. Theoretical analysis shows that the production is a combination of the two-photon ionization of Ne(8+) ground state and a high-order sequential process involving single-photon production and ionization of transient excited states on a time scale faster than the Auger decay.

View Article and Find Full Text PDF

The Linac Coherent Light Source free electron laser is a source of high brightness x rays, 2×10(11) photons in a ∼5 fs pulse, that can be focused to produce double core vacancies through rapid sequential ionization. This enables double core vacancy Auger electron spectroscopy, an entirely new way to study femtosecond chemical dynamics with Auger electrons that probe the local valence structure of molecules near a specific atomic core. Using 1.

View Article and Find Full Text PDF

Sequential multiple photoionization of the prototypical molecule N2 is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications.

View Article and Find Full Text PDF

The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses.

View Article and Find Full Text PDF

We report the compression of intense, carrier-envelope phase stable mid-IR pulses down to few-cycle duration using an optical filament. A filament in xenon gas is formed by using self-phase stabilized 330 microJ 55 fs pulses at 2 microm produced via difference-frequency generation in a Ti:sapphire-pumped optical parametric amplifier. The ultrabroadband 2 microm carrier-wavelength output is self-compressed below 3 optical cycles and has a 270 microJ pulse energy.

View Article and Find Full Text PDF

Electron energy distributions of singly and doubly ionized helium in an intense 390 nm laser field have been measured at two intensities (0.8 PW/cm2 and 1.1 PW/cm2, where PW is defined as 10(15) W/cm2).

View Article and Find Full Text PDF