Monitoring virus infections can be an important selection tool in honey bee breeding. A recent study pointed towards an association between the virus-free status of eggs and an increased virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both naturally surviving and traditionally managed colonies from across Europe were screened for the prevalence of different viruses.
View Article and Find Full Text PDFComparative studies of genetic diversity and population structure can shed light on the ecological and evolutionary factors governing host-parasite interactions. Even though invasive parasites are considered of major biological importance, little is known about their adaptative potential when infesting the new hosts. Here, the genetic diversification of , a novel parasite of originating from Asia, was investigated using population genetics to determine how the genetic structure of the parasite changed in distinct European populations of its new host.
View Article and Find Full Text PDFThe ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. Several honeybee populations across Europe have well-documented adaptations of mite-resistant traits but little is known about host adaptations towards the virus infections vectored by the mite. The aim of this study was to assess and compare the possible contribution of adapted virus tolerance and/or resistance to the enhanced survival of four well-documented mite-resistant honeybee populations from Norway, Sweden, The Netherlands and France, in relation to unselected mite-susceptible honeybees.
View Article and Find Full Text PDFGlobal pollinator declines as a result of emerging infectious diseases are of major concern. Managed honeybees Apis mellifera are susceptible to numerous parasites and pathogens, many of which appear to be transmissible to sympatric non-Apis taxa. The ectoparasitic mite Varroa destructor is considered to be the most significant threat to honeybees due to its role in vectoring RNA viruses, particularly Deformed wing virus (DWV).
View Article and Find Full Text PDFCo-evolution is a major driving force shaping the outcome of host-parasite interactions over time. After host shifts, the lack of co-evolution can have a drastic impact on novel host populations. Nevertheless, it is known that Western honey bee () populations can cope with host-shifted ectoparasitic mites () by means of natural selection.
View Article and Find Full Text PDFHost-parasite co-evolution history is lacking when parasites switch to novel hosts. This was the case for Western honey bees (Apis mellifera) when the ectoparasitic mite, Varroa destructor, switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe biological threat to A.
View Article and Find Full Text PDFUnderstanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees () has changed dramatically since the emergence of the parasitic mite , which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity.
View Article and Find Full Text PDFThe 2013 EU ban of three neonicotinoids used in seed coating of pollinator attractive crops was put in place because of concern about declining wild pollinator populations and numbers of honeybee colonies. It was also concluded that there is an urgent need for good field data to fill knowledge gaps. In the meantime such data have been generated.
View Article and Find Full Text PDFRecent major losses of managed honeybee, colonies at a global scale have resulted in a multitude of research efforts to identify the underlying mechanisms. Numerous factors acting singly and/or in combination have been identified, ranging from pathogens, over nutrition to pesticides. However, the role of apiculture in limiting natural selection has largely been ignored.
View Article and Find Full Text PDFIn June 2008, a surveillance study for metals in honeybees was performed in the Netherlands. Randomly, 150 apiaries were selected. In each apiary, five colonies were sampled.
View Article and Find Full Text PDFA summary is provided of recent advances in the natural science evidence base concerning the effects of neonicotinoid insecticides on insect pollinators in a format (a 'restatement') intended to be accessible to informed but not expert policymakers and stakeholders. Important new studies have been published since our recent review of this field (Godfray et al. 2014 Proc.
View Article and Find Full Text PDFThere is evidence that in Europe and North America many species of pollinators are in decline, both in abundance and distribution. Although there is a long list of potential causes of this decline, there is concern that neonicotinoid insecticides, in particular through their use as seed treatments are, at least in part, responsible. This paper describes a project that set out to summarize the natural science evidence base relevant to neonicotinoid insecticides and insect pollinators in as policy-neutral terms as possible.
View Article and Find Full Text PDFVarroa destructor in combination with one or more stressors, such as low food availability or chemical exposure, is considered to be one of the main causes for honey bee colony losses. We examined the interactive effect of pollen availability on the protein content and body weight of young bees that emerged with and without V. destructor infestation.
View Article and Find Full Text PDFBackground: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V.
View Article and Find Full Text PDFNeonicotinoid insecticides are successfully applied to control pests in a variety of agricultural crops; however, they may not only affect pest insects but also non-target organisms such as pollinators. This review summarizes, for the first time, 15 years of research on the hazards of neonicotinoids to bees including honey bees, bumble bees and solitary bees. The focus of the paper is on three different key aspects determining the risks of neonicotinoid field concentrations for bee populations: (1) the environmental neonicotinoid residue levels in plants, bees and bee products in relation to pesticide application, (2) the reported side-effects with special attention for sublethal effects, and (3) the usefulness for the evaluation of neonicotinoids of an already existing risk assessment scheme for systemic compounds.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
March 2011
Pyrrolizidine alkaloids (PAs) are a structurally diverse group of toxicologically relevant secondary plant metabolites. Currently, two analytical methods are used to determine PA content in honey. To achieve reasonably high sensitivity and selectivity, mass spectrometry detection is demanded.
View Article and Find Full Text PDFBackground: In 1999, an extensive study among bell pepper growers showed a prevalence of 53.8% work-related symptoms and 35.4% sensitisation to bell pepper pollen.
View Article and Find Full Text PDFThe contribution of the alternative pathway in root respiration of Pisum sativum L. cv Rondo, Plantago lanceolata L., and Plantago major L.
View Article and Find Full Text PDF